Math 318 Spring 2015
— Assignments are due at the beginning of the class on the due date.
— No late assignments will be accepted.
— Please use letter sized paper, and write your name and student number on the front page.
— Don’t forget to staple your homework!

Assignment 10 Due date: April 17, 2015

All numbered problems are from Shifrin.

Section 5.3 2, 5

Section 5.3 6(a) continued...

For the matrix
\[
A = \begin{pmatrix}
1 & 3 \\
3 & 13
\end{pmatrix}
\]

you have computed the eigenvalues in the previous assignment. Now verify that the matrix may indeed be orthogonally diagonalized. That is, there exist orthogonal matrix \(P \) and diagonal matrix \(D \) such that

\[
A = PDP^{-1}.
\]

Section 5.4 1(a) (b)

Think about part (c), but you do have to hand in an answer.

Section 5.4 18

Note: Instead of using the constraint \(||x|| = 1 \), it is easier to use \(||x||^2 = 1 \).

Section 5.4 21, 28

Problem-not-from-the-text. Consider the point \(a = (0,0,1)^T \) in \(\mathbb{R}^3 \). Define the function

\[
f : \mathbb{R}^3 \to \mathbb{R}, \quad f(x) = ||x - a||^2
\]

(a) Compute the Hessian matrix of \(f \).

(b) Restrict \(f \) to the xy-plane, show that the origin \(0 \) is a constrained critical point.

(c) Show that the 2x2 topleft block of \(\text{Hess}(f)(0) \) is positive-definite. This is called the constrained Hessian matrix of \(f \).

Note: We conclude that \(0 \) is a local minimum of \(f \) constrained to the xy-plane. That is, on the xy-plane, \(0 \) is the closest point \(a \), which is obvious.