HOMEWORK 3 SOLUTIONS
Due 2/15/16

Part II Section 9 Exercises

4. Find the orbits of \(\sigma : \mathbb{Z} \rightarrow \mathbb{Z} \) defined by \(\sigma(n) = n + 1 \).

Solution: We show that the only orbit is \(\mathbb{Z} \). Let \(i, j \in \mathbb{Z} \). Then \(j - i \in \mathbb{Z} \) and \(\sigma^{j-i}(i) = i + (j - i) = j \), and thus \(\sigma \) has only one orbit.

5. Find the orbits of \(\sigma : \mathbb{Z} \rightarrow \mathbb{Z} \) defined by \(\sigma(n) = n + 2 \).

Solution: We will show that the orbits of \(\sigma \) are \(2\mathbb{Z} \) and \(2\mathbb{Z} + 1 \), the even and odd integers respectively. Let \(2i, 2j \in 2\mathbb{Z} \). Then \(2j - 2i = 2(j - i) \in 2\mathbb{Z} \), and thus \(\sigma^{j-i}(2i) = 2i + 2(j - i) = 2j \). Similarly, suppose \(2p+1, 2q+1 \in 2\mathbb{Z} + 1 \). Then \((2q+1) - (2p+1) = 2(q-p) \in 2\mathbb{Z} \), and so \(\sigma^{q-p}(2p+1) = 2p+1 + 2(q-p) = 2q+1 \). Thus, \(2\mathbb{Z} \) and \(2\mathbb{Z} + 1 \) are the orbits of \(\sigma \).

6. Find the orbits of \(\sigma : \mathbb{Z} \rightarrow \mathbb{Z} \) defined by \(\sigma(n) = n - 3 \).

Solution: Similarly to the prior two problems, the orbits of \(\sigma \) are \(3\mathbb{Z} \), \(3\mathbb{Z} + 1 \), and \(3\mathbb{Z} + 2 \).

9. Compute the following product of permutations in \(S_8 \): \((1\,2\,7\,8\,2\,1)(7\,2\,8\,1\,5) \).

Solution: Since \((7\,2\,8\,1\,5) \) maps 1 to 5, \((2\,1) \) fixes 5, \((4\,7\,8) \) fixes 5, and \((1\,2) \) fixes 5, \((1\,2)(4\,7\,8)(2\,1)(7\,2\,8\,1\,5) \) maps 1 to 5. Similarly, we compute \((1\,2)(4\,7\,8)(2\,1)(7\,2\,8\,1\,5) = (1\,5\,8)(2\,4\,7) \).
12. Express \(\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 1 & 4 & 7 & 2 & 5 & 8 & 6 \end{pmatrix} \) as a product of disjoint cycles and as a product of transpositions.

Solution: Since
\[
\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 1 & 4 & 7 & 2 & 5 & 8 & 6 \end{pmatrix} = (13478652) \]
is a cycle, we directly compute that
\[
\]

16. Find the maximum possible value for an element of \(S_7 \).

Proof. We first show general result that will be useful in its own right: if \(\prod_{I=1}^{N} \gamma_I \) is a product of disjoint cycles of length \(\ell_I \), then \(\left| \prod_{I=1}^{N} \gamma_I \right| = \text{lcm}(\ell_1, \ldots, \ell_N) \). Let \(l = \text{lcm}(\ell_1, \ldots, \ell_N) \). Then \(l = \ell_Id_I \) for some \(d_I \in \mathbb{N} \). Then, since disjoint cycles commute,
\[
(\prod_{I=1}^{N} \gamma_I)^l = \prod_{I=1}^{N} \gamma_I^l = \prod_{I=1}^{N} (\gamma_I^l)^d_I = \prod_{I=1}^{N} \ell_d_I = l.
\]
Thus, finding an element of maximal order in \(S_n \) amounts to finding a partition of \(n \) (an unordered list of natural numbers \(n_1, \ldots, n_M \) such that \(m \sum_{J=1}^{M} n_J = n \)) with maximal least common multiple of the members of the partition. Then any product of cycles of these lengths will have maximal order. For example, in \(S_7 \), we need a list of natural numbers \(\{n_1, \ldots, n_M\} \) such that \(\sum_{i=1}^{m} n_i = 7 \) and \(\text{lcm}(n_1, \ldots, n_m) \) is as high as possible.
Here, we write each partition of 7 along with the least common multiple of its members:

\[
\begin{align*}
1 + 1 + 1 + 1 + 1 + 1 + 1 &= 7; \quad \text{lcm}(1, 1, 1, 1, 1, 1) = 1 \\
2 + 1 + 1 + 1 + 1 + 1 &= 7; \quad \text{lcm}(2, 1, 1, 1, 1, 1) = 2 \\
2 + 2 + 1 + 1 + 1 &= 7; \quad \text{lcm}(2, 2, 1, 1, 1) = 2 \\
2 + 2 + 2 + 1 &= 7; \quad \text{lcm}(2, 2, 2, 1) = 2 \\
3 + 1 + 1 + 1 + 1 &= 7; \quad \text{lcm}(3, 1, 1, 1, 1) = 3 \\
3 + 2 + 1 + 1 &= 7; \quad \text{lcm}(3, 2, 1, 1) = 6 \\
3 + 2 + 2 &= 7; \quad \text{lcm}(3, 2, 2) = 6 \\
4 + 1 + 1 + 1 &= 7; \quad \text{lcm}(4, 1, 1, 1) = 4 \\
4 + 2 + 1 &= 7; \quad \text{lcm}(4, 2, 1) = 4 \\
4 + 3 &= 7; \quad \text{lcm}(4, 3) = 12 \\
5 + 1 + 1 &= 7; \quad \text{lcm}(5, 1, 1) = 5 \\
5 + 2 &= 7; \quad \text{lcm}(5, 2) = 10 \\
6 + 1 &= 7; \quad \text{lcm}(6, 1) = 6 \\
7 &= 7; \quad \text{lcm}(7) = 7
\end{align*}
\]

Thus, any product of two disjoint cycles, one of length 4 and one of length 3 (say, \((1 \ 2 \ 3 \ 4)(5 \ 6 \ 7)\)) will produce an element of order \(\text{lcm}(4, 3) = 12\), and this is the maximal possible order for an element of \(S_7\). In general, it is not easy to determine this maximal number, as the number of partitions of \(n\) grows quickly as \(n\) gets larger. The function that associates this maximal number to \(n\) is known as Landau’s function. ■
27. Suppose \(n \in \mathbb{N} \) such that \(n \geq 3 \). Show that every \(\sigma \in S_n \) can be written as a product of at most \(n-1 \) transpositions. If \(\sigma \) is not a cycle, show that \(\sigma \) can be written as a product of at most \(n-2 \) transpositions.

Thank you to Justin Finkel and Renee Mirka for correcting a bounding error I did not catch on my initial attempted proof for this problem.

Proof. Suppose \(\sigma \in S_n \). If \(\sigma = \iota \), then \(\sigma = (1 \, 2)(1 \, 2) \) is the desired product. Otherwise, by Theorem 9.8 we can write \(\sigma = \prod_{i=1}^{m} \gamma_i \), where the \(\gamma_i \) are disjoint cycles and \(m \in \mathbb{N} \). Note that, since the cycles \(\gamma_i \) are disjoint, the sum of the lengths \(\ell_i \) of the cycles \(\gamma_i \) must be at most \(n \), and so \(\sum_{i=1}^{m} \ell_i \leq n \) (in short, none of the numbers 1, 2, \ldots, \(n \) is written more than once in the cycle decomposition). If \(\gamma_i \) is of length \(\ell_i \), then \(\gamma_i = \prod_{j_i=1}^{\ell_i-1} \tau_{j_i} \), where each \(\tau_{j_i} \) is a transposition, as in Definition 9.11. Thus, \(\sigma = \prod_{i=1}^{m} \gamma_i = \prod_{i=1}^{m} \left(\prod_{j_i=1}^{\ell_i-1} \tau_{j_i} \right) \) gives \(\sigma \) as a product of \(\sum_{i=1}^{m} (\ell_i - 1) = \left(\sum_{i=1}^{m} \ell_i \right) - m \leq n - m \leq n - 1 \) transpositions.

As above, if \(\sigma \) is not a cycle, then \(m \geq 2 \), and thus we have written \(\sigma \) as a product of \(\sum_{i=1}^{m} (\ell_i - 1) = \left(\sum_{i=1}^{m} \ell_i \right) - m \leq n - m \leq n - 2 \) transpositions. In fact, if \(\sigma \) is a cycle of length \(m \leq n-1 \), then we can write \(\sigma \) as a product of at most \(m - 1 \leq n - 2 \) transpositions as in Definition 9.11, i.e. only cycles of length \(n \) require \(n-1 \) transpositions. \(\blacksquare \)

29. Show that for every subgroup \(H \) of \(S_n \) with \(n \geq 2 \), either all the permutations of \(H \) are even or exactly half of them are even.

Proof. Suppose \(H \) contains an odd permutation, say \(\omega = \prod_{i=1}^{2m+1} \tau_i \) for \(m \in \mathbb{N} \) and some transpositions \(\tau_i \). Set \(H_o = H \cap A_n \) and \(H_e = H \setminus H_o \). Define the function \(S : H_e \to H_o \) by \(S(\epsilon) = \omega \circ \epsilon \). If \(\epsilon \in H_o \), then \(\epsilon \) is even, and hence \(\lambda \circ \epsilon \) is odd, and so \(S \) does in fact map \(H_e \) into \(H_o \). We will now show that \(S \) is a bijection, which will yield the result. Suppose \(S(\epsilon) = S(\xi) \). Then, \(\omega \circ \epsilon = \omega \circ \xi \), and thus \(\epsilon = \xi \) by cancellation. Thus, \(S \) is injective. Let \(\sigma \in H_o \). The, since \(\sigma \) is odd and \(\omega \) is odd, \(\omega^{-1} \circ \sigma \) is even, and hence in \(H_e \) since \(\omega, \sigma \in H \).

Then \(S(\omega^{-1} \circ \sigma) = \omega \circ (\omega^{-1} \circ \sigma) = (\omega \circ \omega^{-1}) \circ \sigma = \iota \circ \sigma = \sigma \), and so \(S \) is surjective. Then \(S \) is a bijection, and therefore \(|H_e| = |H_o| \), i.e. \(H \) has exactly as many even permutations as odd permutations.

Therefore, either all permutations in \(H \) are even or exactly half of them are even. \(\blacksquare \)

32. Let \(A \) be an infinite set, and \(K \) the set of all \(\sigma \in S_A \) such that \(|\{a \in A \mid \sigma(a) \neq a\}| \leq 50 \). Is \(K \) a subgroup of \(S_A \)?

Solution: We will show that \(K \) is not a subgroup of \(S_A \). Let \(a_1, \ldots, a_{100} \in A \). Then \((a_1 \ a_2 \ldots \ a_{50})\) and \((a_{51} \ a_{52} \ldots \ a_{100})\) are in \(K \), but their product \((a_1 \ a_2 \ldots \ a_{50})(a_{51} \ a_{52} \ldots \ a_{100})\) is not since \((a_1 \ a_2 \ldots \ a_{50})(a_{51} \ a_{52} \ldots \ a_{100})\) moves 100 > 50 elements.
34. Show that if \(\sigma \) is a cycle of odd length, then \(\sigma^2 \) is a cycle.

Proof. Let \(n \geq 3 \) (so that there are odd cycles in \(S_n \)), and suppose \(\sigma = (a_1 a_2 \cdots a_{2m+1}) \) for some \(m \in \mathbb{N} \) and distinct \(a_i \in \{1, 2, \ldots, n\} \). Then \(\sigma^2 = (a_1 a_3 \cdots a_{2m-1} \ a_{2m+1} \ a_2 a_4 \cdots a_{2m-2} \ a_{2m}) \) is a cycle. \(\blacksquare \)

39. Show that \(S_n = \langle (1 2), (1 2 \cdots n - 1 \ n) \rangle \).

Proof. By Corollary 9.12, it suffices to show that for each transpositions \((i j) \in S_n \),
\[(i j) \in \langle (1 2), (1 2 \cdots n - 1 \ n) \rangle. \]
Towards this, we note that for \(1 \leq i < j \leq n \),
\[(i j) = (i \ i + 1)(i + 1 \ i + 2) \cdots (j - 2 \ j - 1)(j - 1 \ j)(j - 2 \ j - 1) \cdots (i + 1 \ i + 2)(i \ i + 1). \]
Thus, to generate the transpositions, it is enough to generate the transpositions of the form \((k \ k + 1) \) for \(1 \leq k \leq n - 1 \).

Noting that \((1 2 \cdots n)^{k-1}(2) = k + 1 \) and \((1 2 \cdots n)^{n-k+1}(k) = 1 \), we have
\[(1 2 \cdots n)^{k-1}(1 2)(1 2 \cdots n)^{n-k+1}(k) = k + 1 \]
Similarly, since \((1 2 \cdots n)^{k-1}(1) = k \) and \((1 2 \cdots n)^{n-k+1}(k + 1) = 2 \), we have
\[(1 2 \cdots n)^{k-1}(1 2)(1 2 \cdots n)^{n-k+1}(k + 1) = k \]
For all other \(l \neq k \), \((1 2 \cdots n)^{n-k+1}(l) \neq 1, 2 \), and so \((1 2) \) fixes \((1 2 \cdots n)^{n-k+1}(l) \). Then
\[(1 2 \cdots n)^{k-1}(1 2)(1 2 \cdots n)^{n-k+1}(l) = (1 2 \cdots n)^{k-1} \left((1 2 \cdots n)^{n-k+1}(l) \right) = (1 2 \cdots n)^{n}(l) = i(l) = l \]
and so \((1 2 \cdots n)^{k-1}(1 2)(1 2 \cdots n)^{n-k+1} = (k \ k + 1) \). Thus, every \((k \ k + 1) \in \langle (1 2), (1 2 \cdots n) \rangle \). Then every \((i j) \in \langle (1 2), (1 2 \cdots n) \rangle \), and hence \(S_n = \langle (1 2), (1 2 \cdots n) \rangle \) by Corollary 9.12. \(\blacksquare \)