I. True/False

1. The binary operation on a group is completely determined by the identity element and inverse operation. \textbf{False}

2. If \(\phi : G \to G' \) is a group homomorphism and \(H \) is a subgroup of \(G \), then \(\phi(H) \) is a subgroup of \(G' \). \textbf{True}

3. An inner automorphism of an abelian group must be the identity map. \textbf{True}

4. If \(H \) and \(K \) are subgroups of \(G \) such that \(H \cap K = \{e\} \) and \(G = HK \), then \(H \) is a normal subgroup of \(G \). \textbf{False}

 \text{Counter example: } G = S_3, H = \langle (23) \rangle \text{ and } K = \langle (123) \rangle.

5. Among all abelian groups of order \(p^n \) for some prime number \(p \), the one with the minimum number of subgroups, is the cyclic one. \textbf{True}

II. Short Answers

1. In each of the following cases, indicate whether the given subgroup \(H \) of \(S_4 \) is normal. If \(H \) is normal, state what the quotient group \(S_4/H \) is.

 a) \(H = \{e\} \)

 \{e\} is normal. \(S_4 / \{e\} \cong S_4 \).

 b) \(H = \langle (12) \rangle \)

 \langle (12) \rangle \text{ is not normal.}

 c) \(H = S_3 \)

 \(S_3 \) is not normal.

 d) \(H = A_4 \)

 \(A_4 \) is normal. \(S_4 / A_4 \cong \mathbb{Z}/2\mathbb{Z} \).

 e) \(H = \langle (1234), (14)(23) \rangle \)

 \(H \) is not normal.

2. In each of the following cases, indicate the order of the element \(g \) in the given group \(G \).

 a) \(g = m, \quad G = \mathbb{Z}/n\mathbb{Z} \).

 \(m \) \text{ has order } \frac{n}{\gcd(m,n)}.

 b) \(g = (52743), \quad G = S_8 \).

 \text{The order of } (52743) \text{ is } 5.

 c) \(g = 5 + \langle 4 \rangle, \quad G = (\mathbb{Z}/12\mathbb{Z}) / \langle 4 \rangle. \)

 \text{The order of } 5 + \langle 4 \rangle \text{ is } 4.

 d) \(g = (2,1) + \langle (4,4) \rangle, \quad G = (\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}) / \langle (4,4) \rangle. \)

 \text{The order of } (2,1) + \langle (4,4) \rangle \text{ is } 4.

 e) \(g = (12345)(5678)(89), \quad G = S_9. \)

 \text{The order of } (12345)(5678)(89) = (123456789) \text{ is } 9.
III. Proofs

1. Let C be a normal subgroup of A, and let D be a normal subgroup of B. Prove that
 a) $(C \times D) \trianglelefteq (A \times B)$;
 b) $(A \times B) / (C \times D) \cong (A / C) \times (B / D)$.

 Proof.
 a) Since $C \trianglelefteq A$ and $D \trianglelefteq B$, for all $c \in C$ and $a \in A$, we have $aca^{-1} \in C$; and for all $d \in D$ and $b \in B$, we have $bdb^{-1} \in D$. It follows that for all $(c, d) \in C \times D$ and $(a, b) \in A \times B$, we have
 $$(a, b) \cdot (c, d) \cdot (a, b)^{-1} = (a, b) \cdot (c, d) \cdot (a^{-1}, b^{-1})$$
 $$= (aca^{-1}, bdb^{-1}) \in C \times D.$$
 Hence, $(C \times D) \trianglelefteq (A \times B)$.

 b) Consider the surjective group homomorphism
 $$\phi : A \times B \to (A / C) \times (B / D),$$
 $$(a, b) \mapsto (aC, bD).$$
 The kernel of ϕ is $C \times D$, and the result follows from the 1st isomorphism theorem.

2. For $n \geq 3$, show that A_n contains a subgroup isomorphic to S_{n-2}.

 Proof.
 Fix $\alpha \in S_n$, which is the transposition $(n - 1, n)$. Consider the map
 $$\phi : S_{n-2} \to A_n,$$
 where
 $$\phi(\sigma) = \begin{cases}
 \sigma & \text{if } \sigma \text{ is even,} \\
 \sigma\alpha & \text{if } \sigma \text{ is odd.}
 \end{cases}$$
 The map ϕ is a group homomorphism, and $\ker(\phi) = \{e\}$, so $\im(\phi)$ is isomorphic to S_{n-2}.