Name:

1. Let \(f : M \to M \) be a diffeomorphism. For vector fields \(X \) and \(Y \) on \(M \), show that
\[
f_*([X,Y]) = [f_*(X),f_*(Y)]
\]

2. Consider two vector fields \(X = \frac{\partial}{\partial y} \) and \(Y = y \frac{\partial}{\partial x} - \frac{\partial}{\partial z} \) on \(\mathbb{R}^3 \), where we use the coordinates \((x,y,z)\). Is it possible to find a 2-dimensional submanifold of \(\mathbb{R}^3 \) with the property that both \(X \) and \(Y \) are tangent to it at all its points? Justify your answer.

3. Let \(V \) be a finite dimensional vector space. Then \(TV = V \times V \).

a) The trivial map \(E : x \mapsto (x,x) \) defines a section of the tangent bundle, i.e. a vector field. Compute the time-\(t \) flow of this vector field and determine whether it is complete or not.

b) If \(A : V \to V \) is a linear map, then the map \(A : x \mapsto (x, Ax) \) defines a vector field on \(V \). Compute its flow and determine if it is complete.

c) If \(A \) and \(B \) are two linear maps, compute the Lie derivative of the vector fields determined by \(A \) and \(B \), i.e. compute their bracket. Verify that if the vector fields commute, then the flows commute.

4. a) Let \(M \) be a smooth manifold, and let \(\iota : L \hookrightarrow M \) be an embedding. Show that \(TL \) is a subbundle of \(TM|_L := \iota^*TM \).

For your convenience, here is the definition of subbundle.

Definition 1. Given a vector bundle \(\pi_E : E \to M \), a subbundle of \(E \) is a vector bundle \(\pi_F : F \to M \) such that \(F \) is a embedded submanifold of \(E \), \(\pi_F \) is the restriction of \(\pi_E \) to \(F \), and for each \(p \in M \),
\[
F_p = F \cap E_p
\]
is a linear subspace of \(E_p \).

b) Now use the vector space quotient to define the notion of vector bundle quotient, and hence the notion of normal bundle.

c) Give an example of a closed embedded submanifold of a compact manifold such that the normal bundle is trivial. Prove your claim.

d) Give an example of a closed embedded submanifold of a compact manifold such that the normal bundle is not trivial.

Bonus. Prove the claim in d).

5. Let \(M \) be a compact smooth manifold, and let \(E \to M \) be a vector bundle of rank \(k \). Prove that \(E \) admits a section \(s \) with the following property:

a. if \(k > \dim M \), then \(s \) is nowhere vanishing;

b. if \(k \leq M \), then the set of points where \(s \) vanishes is a compact codimension \(k \) submanifold of \(M \).

Hint: Use transversality.

Remark: In particular, \(M \) admits a vector field that vanishes at finitely many points.