1. Let $X \subset \mathbb{R}^N$ be an embedded submanifold. Show that almost every vector space V of a fixed dimension l in \mathbb{R}^N intersects X transversely.

2. Let N be a closed embedded submanifold of M. Show that every smooth vector field $X \in \Gamma(N, TN)$ can be extended to a smooth vector field on M.

3. Let X be a compact manifold, and let Y be a connected manifold. We assume $\dim X = \dim Y$. For a smooth map $f : X \to Y$ such that $\deg_2(f) \neq 0$, show that f is surjective.

4. Let X be a vector field on a m-dimensional manifold M. Suppose $X_p \neq 0$. Show that there is a coordinate chart (U, φ) with $\varphi(p) = 0 \in \mathbb{R}^m$ such that

$$X_q = \frac{\partial}{\partial x_1}$$

for all $q \in U$. Here x_1 is the first coordinate of $(x_1, x_2, \ldots, x_m) \in \mathbb{R}^m$.
