
1. Plot the F densities with every pair of numerator, denominator degrees of freedom chosen from the list 3, 10, 50, over the interval $[0,4]$. (Hint: modify the code on page 227 of our text.)

Solution: Following the hint, use the following R code:

```r
x <- seq(0,4,by=.005); m <- c(3,10,50); n <- c(3,10,50);
par(mfrow=c(3,3)); for (i in 1:3) {
  for (j in 1:3) {
    plot(x,df(x,m[i],n[j]),type='l',ylab="f(x)",cex=.6)
    title(paste(paste("dof =",m[i]),n[j],sep","))
  }
}
```

That yields the graph in Figure HW7,Ex1 below.

2. This problem will illustrate the Central Limit Theorem. Let X be a random variable taking real values $x \in [-1,0] \cup [1,2]$ with uniform pdf $f(x) = \begin{cases}
1/2, & \text{if } -1 \leq x \leq 0 \text{ or } 1 \leq x \leq 2; \\
0, & \text{otherwise}.
\end{cases}$

(a) Generate N samples from this pdf using `runif(N)+sample(c(-1,1),N,replace=TRUE)`. Do this with $N = 500$ and plot the histogram to see how little this pdf resembles the bell-shaped curve e^{-x^2} of the normal density.

(b) What is the exact mean μ of X? (Hint: do not use R or Calculus.)

(c) What is the exact variance σ^2 of X? (Hint: use Calculus.)

(d) Fix $n = 3$ and $m = 200$. Generate m vectors $\{X_i : i = 1,\ldots,m\}$ of n random samples $X_i(1),\ldots,X_i(n)$ of X and form m normalized averages

$$\bar{X}_i \overset{def}= \frac{S_i - n\mu}{\sigma \sqrt{n}}, \quad i = 1,\ldots,m,$$

where $S_i = \sum_{k=1}^n X_i(k)$, and μ and σ are from parts b and c. Plot the histogram of \bar{X}_i and the quantile-quantile plot `qqnorm()` against the normal pdf.

(e) Repeat part d with $n = 50$ and $m = 200$.

Solution: (a) Use the given R code:
Figure 1: HW7,Ex1: Plots of F densities with various degrees of freedom.
Figure 2: HW7,Ex2a: Histogram of samples from a certain non-normal PDF.
$N \leftarrow 500; X \leftarrow \text{runif}(N)+\text{sample}(c(-1,1), N, \text{replace}=\text{TRUE}); \text{hist}(X);$

The results are shown in Figure HW7,Ex2a.

(b) Compute the mean μ by

$$\mu = \int_{-\infty}^{\infty} xf(x) \, dx = \int_{-1}^{2} xf(x) \, dx = 1/2,$$

which is evident since f is symmetric about $1/2$ and vanishes outside $[-1, 2]$. Alternatively, use Macsyma:

$$f: 1/2; \text{mu: integrate(x*f,x,-1,0) + integrate(x*f,x,1,2)};$$

(c) Compute the variance σ^2 by

$$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) \, dx = \int_{-1}^{0} (x - \frac{1}{2})^2 \left(\frac{1}{2}\right) \, dx + \int_{1}^{2} (x - \frac{1}{2})^2 \left(\frac{1}{2}\right) \, dx = \frac{13}{12},$$

by elementary methods or with Macsyma:

$$f: 1/2; \text{mu: integrate(x*f,x,-1,0) + integrate(x*f,x,1,2)}; \quad \text{sigma2: integrate((x-mu)*(x-mu)*f,x,-1,0) + integrate((x-mu)*(x-mu)*f,x,1,2)};$$

This shows that the pdf has finite variance.

(d,e) Use the following R code:

```r
xbars <- function(n,m) {
  mu <- 1/2; sigma <- sqrt(13/12); xbar <- vector(mode="numeric", length=m);
  for (i in 1:m) {
    X <- runif(n)+sample(c(-1,1), n, replace=TRUE);
    xbar[i] <- (sum(X)-n*mu)/(sigma*sqrt(n));
  }
  xbar <- xbar;
}
par(mfrow=c(2,2));
xbar <- xbars(n=3, m=200); hist(xbar); qqnorm(xbar);
xbar <- xbars(n=50, m=200); hist(xbar); qqnorm(xbar);
```

The results are shown in Figure HW7,Ex2de.

3. Alleles A and a are present in a population in unknown proportions p and $1 - p$. Assuming a Hardy-Weinberg equilibrium distribution of the resulting diploid genotypes, find the maximum likelihood estimator for p given the following experimental results:

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Count Data</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>177</td>
<td>n_{AA}</td>
</tr>
<tr>
<td>Aa</td>
<td>716</td>
<td>n_{Aa}</td>
</tr>
<tr>
<td>aa</td>
<td>189</td>
<td>n_{aa}</td>
</tr>
</tbody>
</table>
Figure 3: HW7, Ex2de: the 3-means and 50-means from a non-normal PDF.
Solution: As on page 231 of our text, the likelihood function satisfies
\[L_n(p) \propto (p)^{2n_{AA}}(2p(1-p))^{n_{Aa}}(1-p)^{2n_{aa}} = (p)^{2 \times 177}(2p(1-p))^{716}(1-p)^{2 \times 189}, \]
where \(n = (n_{AA}, n_{Aa}, n_{aa}) = (177, 716, 189) \) is the count data from the experiment.

Setting \(g(p) \stackrel{\text{def}}{=} (\log L_n(p))' = 0 \) and solving for \(p \) gives the desired estimator:
\[0 = g(p) = \frac{2n_{AA}}{p} + \frac{n_{Aa}}{p} - \frac{n_{Aa}}{1-p} - \frac{2n_{aa}}{1-p}, \]
as derived on page 231 of our text. Solving for \(p \) gives
\[p = \frac{n_{Aa} + 2n_{AA}}{2n_{Aa} + 2n_{AA} + 2n_{aa}} = \frac{716 + 2 \times 177}{2 \times 716 + 2 \times 177 + 2 \times 189} = \frac{535}{1082} \approx 0.4944547. \]
This may be calculated using the Macsyma commands
\[
g: 2*nAA/p + nAa/p - nAa/(1-p) - 2*naa/(1-p);
gsolve(g=0,p);
subst([nAA=177,nAa=716,naa=189],%);
\]
Alternatively, we may plot the log-likelihood function to determine its maximum within some reasonably fine grid. This may be done with the R commands
\[
G<-function(p,nAA=177,nAa=716,naa=189) \{ \\
2*nAA*log(p) + nAa*log(p*(1-p)) + 2*naa*log(1-p); \\
p<-seq(0.4,0.6,bty=0.001); plot(p,G(p)); \\
p<-seq(0.45,0.55,bty=0.0001); plot(p,G(p)); \\
p<-seq(0.493,0.496,bty=0.00001); plot(p,G(p));
\}
\]
We may also find the zero of the derivative of the log-likelihood function graphically:
\[
g<-function(p,nAA=177,nAa=716,naa=189) \{ \\
2*nAA/p + nAa/p - nAa/(1-p) - 2*naa/(1-p); \\
p<-seq(0.4,0.6,bty=0.001); plot(p,g(p)); \\
p<-seq(0.45,0.55,bty=0.0001); plot(p,g(p)); \\
p<-seq(0.493,0.496,bty=0.00001); plot(p,g(p));
\}
\]
We may also find the zero of the derivative of the log-likelihood function graphically:
\[
G<-function(p,nAA=177,nAa=716,naa=189) \{ \\
2*nAA*log(p) + nAa*log(p*(1-p)) + 2*naa*log(1-p); \\
p<-seq(0.4,0.6,bty=0.001); plot(p,G(p)); \\
p<-seq(0.45,0.55,bty=0.0001); plot(p,G(p)); \\
p<-seq(0.493,0.496,bty=0.00001); plot(p,G(p));
\}
\]
These six plots are displayed in Figure HW7,Ex4. \(\square \)

4. Following are 14 samples from a population with unknown (but finite) mean \(\mu \) and standard deviation \(\sigma \):
\[2.59 \ 2.67 \ 2.16 \ 1.95 \ 2.61 \ 1.11 \ 2.62 \ 2.06 \ 2.06 \ 1.66 \ 2.16 \ 3.35 \ 2.46 \ 2.55 \]
(a) Compute an estimate for \(\sigma \).
(b) Compute an estimate for \(\mu \).
(c) Find the median of the 14 samples.
(d) Find the quartile deviation of the 14 samples.

Solution: Use \(x<- \text{scan}() \) with cut and paste, or the following R code, to load the data:
Figure 4: HW7, Ex4: Plots of the log-likelihood function $G(p)$ and its derivative $g(p) = G'(p)$ near the maximum-likelihood $p = 0.4944547$.
That yields the following values:
(a) \(\text{sd}(x) = 0.5342228 \).
(b) \(\text{mean}(x) = 2.286429 \).
(c) \(\text{median}(x) \) gives 2.31; \(\text{summary}(x)[3] \) gives 2.310.
(d) \((\text{summary}(x)[5]-\text{summary}(x)[2])/2 \) gives 0.2725.

5. This problem will illustrate nonparametric bootstrap estimation of sample variability. First generate a 200 sample data set as follows:

\[x <- c(2.59, 2.67, 2.16, 1.95, 2.61, 1.11, 2.62, 2.06, 2.06, 1.66, 2.16, 3.35, 2.46, 2.55); \]

That produces the following output:
(a) See Figure HW7,Ex5a below.
(b) mean = 2.109065, sd = 2.077493.
(b') sd/sqrt(200) = 0.1469010.
(c) 1st Quartile q1 = 0.3853; Median = 1.5940; 3rd Quartile q3 = 3.6940.
(d) Bootstrap means: mean = 2.097153; sd = 0.1482708.
(d') The standard deviation of the bootstrap means is slightly bigger than the “standard error” computed in part b'.
Figure 5: HW7,Ex5a: Histogram of another non-normal PDF.
(e) Bootstrap medians: median = 1.5970; 1st quartile qb1 = 1.3500; 3rd quartile qb3 = 1.6570.
(e’) The ratio of interquartile differences

\[\frac{q_3 - q_1}{qb_3 - qb_1} = \frac{(3.6940 - 0.3853)}{(1.6570 - 1.3500)} = 10.77752 \]

shows an improvement similar to the \(\sqrt{100} \) reduction that we would expect by taking the mean of 100 samples.