1. Suppose that a risky asset \(S \) has spot price \(S(0) = 100 \) and that the riskless return to \(T = 1 \) year is \(R = 1.0537 \). Assuming there are no arbitrages, compute the following:
 (a) the current zero-coupon bond discount \(Z(0, T) \),
 (b) the Forward price for one share of \(S \) at expiry \(T \),
 (c) the riskless annual interest rate (assuming continuous compounding),

2. With \(S(0), R, \) and \(T \) as in Exercise 1, suppose that \(S(T) \) is modeled by

\[
\begin{array}{c|cccccccc}
S(T) & 93 & 95 & 98 & 104 & 107 & 110 & 114 \\
Pr(S(T)) & 0.02 & 0.05 & 0.09 & 0.29 & 0.31 & 0.19 & 0.05 \\
\end{array}
\]

(a) Use this finite probability space model to estimate premiums \(C(0) \) and \(P(0) \) for European-style Call and Put options, respectively, with strike price \(K = 101 \) and expiry \(T \).
(b) Does Call-Put Parity hold in this model? What might cause it to be inaccurate?

3. Use the no arbitrage Axiom 1 to prove that Eq.1.7 holds.

4. Prove Corollary 1.3. (Hint: review the proof of Theorem 1.2.)

5. Suppose, in contradiction with Eq.1.16, that \(C(0) - P(0) < S(0) - K/R \).
 Construct an arbitrage.

6. Prove Eq.1.20, the Call-Put parity Formula for foreign exchange options:

\[
C(0) - P(0) = \frac{X(0)}{R_f} - \frac{K}{R_d},
\]

using the no arbitrage axiom.

7. (a) Prove that the plus-part function satisfies Eq.1.17:

\[
[X]^+ - [-X]^+ = X,
\]

for any number \(X \).
(b) Apply the identity in part (a) to the payoff values of European-style Call and Put options for S at strike price K and expiry T to show Eq. 1.18:

$$C(T) - P(T) = S(T) - K.$$

8. Plot the payoff and profit graphs for the following colorfully named option portfolios as a function of the price $S(T)$ at expiry time T:

(a) **Long straddle:** buy one Call and one Put on S with the same expiry T and at-the-money strike price $K \approx S(0)$. For what values of $S(T)$ will this be profitable?

(b) **Long strangle:** buy one Call at K_c and one Put at K_p with the same expiry T but with out-of-the-money strike prices $K_p < S(0) < K_c$. How does its profitability compare with that of a long straddle?

9. A **butterfly spread** is a portfolio of European-style Call options purchased at time $t = 0$ with the same expiry $t = T$ but at three strike prices $L < M < H$, where $M = \frac{1}{2}(L + H)$:

- buy one Call C_L at strike price L for $C_L(0)$,
- buy one Call C_H at strike price H for $C_H(0)$,
- sell two Calls C_M short at strike price M for $2C_M(0)$.

(a) Plot the payoff graph for the butterfly spread at expiry when its price is $C_L(T) + C_H(T) - 2C_M(T)$. Mark the three strike prices on the $S(T)$ axis.

(b) Conclude from the graph for (a) that $C_M(0) < \frac{1}{2}[C_L(0) + C_H(0)]$.
(Hint: use the no arbitrage Axiom 1.)

10. An **iron condor** is a portfolio $C_1 - C_2 - P_3 + P_4$ of four European-style options. To construct it, simultaneously buy one Call at K_1, sell one Call at K_2, sell one Put at K_3, and buy one Put at K_4, all with the same expiry T but with $K_1 < K_2 < K_3 < K_4$.

(a) Plot or describe the payoff graph for an iron condor portfolio at expiry.

(b) Assuming no arbitrage, prove that the portfolio must have a positive net premium.

(c) Assuming no arbitrage, find inequalities bounding the maximum profit and the maximum loss of an iron condor portfolio at expiry.