1. Let
\[\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} \, dt \]
be the cumulative distribution function of the standard normal random variable. Prove that
\[1 - \Phi(x) = \Phi(-x) \]
for every \(x \).

2. Rewrite the recursive definition of the random walk \(X \) in Section 2.2 with these normalizations:
 - Multiply by \(1/\sqrt{n/4} = 2/\sqrt{n} \) to have variance 1.
 - Change the time step to \(1/n \) so that the time interval is \([0, 1]\).

3. Derive the Black-Scholes formula for European-style Put options, Eq.2.26:
\[P(0) = e^{-rT}K\Phi(-d_2) - S_0\Phi(-d_1). \]
(Hint: follow the steps in Section 2.3.1, but use the Put payoff \([K - S(T)]^+\) at expiry.)

4. Let \(d_1, d_2 \) be defined as in Eq.2.24, and let \(\phi \) be the standard normal p.d.f. defined in Eq.2.18. Show that
\[S_0\phi(d_1) - Ke^{-rT}\phi(d_2) = 0. \]
(Hint: Notice that \(d_1 - d_2 = v\sqrt{T} \) and
\[d_1 + d_2 = 2(\log \frac{S_0}{K} + rT)/(v\sqrt{T}), \]
and thus \((d_1^2 - d_2^2)/2 = (d_1 - d_2)(d_1 + d_2)/2 = \log(S_0/K) + rT\).)

5. Derive \(\Delta_C \) and \(\Delta_P \) in Section 2.3.3 by differentiating the Black-Scholes formulas.

6. Derive \(\Gamma_C \) and \(\Gamma_P \) in Section 2.3.3 from Black-Scholes.
7. Derive Θ_C and Θ_P in Section 2.3.3 from Black-Scholes.

8. Derive κ_C and κ_P in Section 2.3.3 from Black-Scholes.

9. Derive ρ_C and ρ_P in Section 2.3.3 from Black-Scholes.

10. Implement the computation of all the Black-Scholes Greeks in Octave or MATLAB and add this functionality to the program $\text{BS}()$ in Section 2.4. Apply it to compute the premiums and all Greeks for European-style Call and Put options on a risky asset with the following parameters: spot price $\$90$, strike price $\$95$, expiry in 1 year, annual riskless rate 2%, volatility 15%.

11. (a) Verify Eq.2.34 relating Θ_C, Δ_C, and Γ_C.

(b) Find the equivalent relation for Puts and verify it.

12. (a) Find the coefficients p_1, p_2, p_3 that give the least-squares best fit

$$f(x) = p_1 + p_2 e^x + p_3 e^{-x}$$

to the data $\{(x, y)\} = \{-2, 4\}, \{-1, 1\}, \{0, 0\}, \{1, 1\}, \{2, 4\}$.

(b) Plot f at 81 equispaced points on a graph showing the data.

13. At one instant, two days before expiry, near-the-money Call options for ABC common stock had the following prices:

<table>
<thead>
<tr>
<th>Strike price</th>
<th>Premium</th>
<th>Open interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.00</td>
<td>3.80</td>
<td>3,260</td>
</tr>
<tr>
<td>45.00</td>
<td>2.77</td>
<td>4,499</td>
</tr>
<tr>
<td>46.00</td>
<td>1.77</td>
<td>3,862</td>
</tr>
<tr>
<td>47.00</td>
<td>0.78</td>
<td>6,271</td>
</tr>
<tr>
<td>48.00</td>
<td>0.18</td>
<td>10,156</td>
</tr>
<tr>
<td>49.00</td>
<td>0.03</td>
<td>10,619</td>
</tr>
<tr>
<td>50.00</td>
<td>0.01</td>
<td>14,219</td>
</tr>
</tbody>
</table>

The spot price for ABC is $\$47.58$. Estimate the premium for the at-the-money Call option in the following ways:

(a) Unweighted quadratic regression.

(b) Weighted quadratic regression.

(c) Polynomial interpolation.

(d) Spline interpolation.