1. Suppose that a risky asset \(S \) has spot price \(S(0) = 100 \) and that the riskless return to \(T = 1 \) year is \(R = 1.0223 \). Assuming there are no arbitrage opportunities, compute the following:
 (a) the current zero-coupon bond discount \(Z(0, T) \),
 (b) the Forward price for one share of \(S \) at expiry \(T \),
 (c) the riskless annual interest rate (assuming continuous compounding),

Solution:
(a) From the formula on p.3, \(Z(0, T) = \frac{1}{R} = 0.9782 \).
(b) By Eq.1.15, the fair price is \(K = RS(0) = 102.23 \).
(c) By Eq.1.6, \(r = (\log R)/T = 0.022 \), or 2.2%.

2. With \(S(0) \), \(R \), and \(T \) as in Exercise 1, suppose that \(S(T) \) is modeled by

\[
\begin{array}{c|cccccccc}
S(T) & 92 & 96 & 98 & 100 & 102 & 104 & 108 \\
Pr(S(T)) & 0.01 & 0.04 & 0.15 & 0.30 & 0.30 & 0.18 & 0.02 \\
\end{array}
\]

(a) Use this finite probability space model to estimate premiums \(C(0) \) and \(P(0) \) for European-style Call and Put options, respectively, with strike price \(K = 101 \) and expiry \(T \).
(b) Does Call-Put Parity hold in this model? What might cause it to be inaccurate?

Solution:
(a) First enter the data with these Octave/Matlab commands:

\[
\begin{align*}
R &= 1.0223; \quad S0 = 100; \quad ST = [92 96 98 100 102 104 108]; \\
K &= 101; \quad Pr = [0.01 0.04 0.15 0.30 0.30 0.18 0.02];
\end{align*}
\]

By Eq.1.8, the Call payoff at expiry is \(C(T) = [S(T) - K]^+ \). By Fair Price Theorem 1.4, the no-arbitrage Call premium is the present value of the expected value of this payoff:

\[
C(0) = E(C(T))/R = \frac{1}{R} \sum [S(T) - K]^+ \ Pr(S(T)),
\]

which may be computed with Octave/Matlab commands
C\text{payoff}=\max(0,ST-K) \quad \% \quad C_0=(C\text{payoff} \cdot Pr')/R \quad \% \quad C_0 = 0.95862

Likewise, by Eq.1.9 the Put payoff is $P(T) = \max[K - S(T)]^+$ and the no-arbitrage Put premium is therefore:

$$P(0) = \frac{E(P(T))}{R} = \frac{1}{R} \sum [K - S(T)]^+ \cdot Pr(S(T)),$$

which may be computed with the commands

P\text{payoff}=\max(0,K-ST) \quad \% \quad P_0=(P\text{payoff} \cdot Pr')/R \quad \% \quad P_0 = 1.0173

(b) Observe that Call-Put parity does not hold:

\begin{align*}
C_0-P_0 & \quad \% \quad \text{ans} = -0.058691 \\
S_0-K/R & \quad \% \quad \text{ans} = 1.2032
\end{align*}

The difference is approximately 1.26 instead of exactly 0 as in Eq.1.16. This is roughly the difference between $E(S(T)) = 100.94$, which is the model’s estimate for the Forward price of S, and $RS(0) = 102.23$, which is another Forward estimate using riskless return.

3. Use the no arbitrage Axiom 1 to prove that Eq.1.7 holds.

Solution:

If the asset A costs more, then short-sell A for $A(0)$, buy the sequence of zero-coupon bonds, pocket the surplus, and use the proceeds from the bonds to pay the cash flow to the A buyer over time, settling all liabilities.

Otherwise if the asset A costs less, short-sell the bonds, use the money to buy A for $A(0)$, pocket the surplus, and then pay the bond buyers back over time to settle all obligations. In either case there is an arbitrage.

4. Prove Corollary 1.3. (Hint: review the proof of Theorem 1.2.)

Solution: Recall the statement of Corollary 1.3: If at some time $T > 0$, $A(T, \omega) > B(T, \omega)$ in all states ω, then $A(t) > B(t)$ for all times $0 \leq t < T$.

Proof: Suppose not. Then there is a time t with $0 \leq t < T$ such that $A(t) \leq B(t)$, so assemble the portfolio $-A + B$ by selling B short and buying A. Observe that $-A(t) + B(t) \leq 0$ costs nothing and may even leave a surplus.

At time T, sell A for $A(T, \omega)$ and buy B for $B(T, \omega)$ to cover the short. By hypothesis this pays off $A(T, \omega) - B(T, \omega) > 0$ in all states ω. The assembled portfolio would thus be an arbitrage opportunity, contradicting Axiom 1. Conclude that $A(t) > B(t)$ for all times $0 \leq t \leq T$.

5. Suppose, in contradiction with Eq.1.16, that $C(0) - P(0) < S(0) - K/R$. Construct an arbitrage.

Solution: At $t = 0$, starting with no money, do the following:
• Short-sell P for $P(0)$ cash.
• Short-sell S for $S(0)$ cash.
• Buy C for $C(0)$ cash.
• Deposit K/R cash into the bank at riskless return R.

That leaves $S(0) - K/R - C(0) + P(0) > 0$ cash. Then at $t = T$, clear all debts as follows:

• If $S(T) > K$ then exercise C for a profit of $S(T) - K$. Otherwise C expires worthless.
• If $K > S(T)$, so cash-settle the short-sold P for $K - S(T) > 0$. Otherwise P expires worthless.
• Withdraw $RK/R = K$ cash from the bank, including interest.
• Cover the short sale of S for $S(T)$ cash.

That leaves $C(T) - P(T) + K - S(T) = [S(T) - K]^+ - [K - S(T)]^+ + K - S(T) = 0$ and no debts in all cases. The positive amount obtained at $t = 0$ is therefore an arbitrage profit forbidden by Axiom 1.

6. Prove Eq.1.20, the Call-Put parity Formula for foreign exchange options:

$$C(0) - P(0) = \frac{X(0)}{R_f} - \frac{K}{R_d},$$

using the no arbitrage axiom.

Solution: To prove equality, show that inequality in either direction results in an arbitrage opportunity.

Case 1: $C(0) - P(0) > \frac{X(0)}{R_f} - \frac{K}{R_d}$.

At $t = 0$, starting with no money, perform the following trades:

• Short-sell C for $C(0)$ DOM cash.
• Buy P for $P(0)$ DOM cash.
• Borrow K/R_d DOM cash at R_d from the domestic bank.
• Convert $X(0)/R_f$ DOM to $1/R_f$ FRN at spot exchange rate $X(0)$.
• Deposit $1/R_f$ FRN cash into the foreign bank at R_f.

That leaves $C(0) - P(0) - X(0)/R_f + K/R_d > 0$ DOM in cash, a net profit to keep.

At $t = T$, clear all debts as follows:

• Withdraw 1 FRN cash from the foreign bank, including interest.
• If $K \geq X(T)$, then
 – Short-sold C expires worthless, as $C(T) = [X(T) - K]^+ = 0$ imposes no liability.
 – Exercise P to convert 1 FRN into K DOM.
• Else $K < X(T)$, so
 – Convert 1 FRN to $X(T)$ DOM at the market rate $X(T)$.
 – Cash settle C for $C(T) = [X(T) - K]^+ = X(T) - K$.
 – Do not exercise P, as $P(T) = [K - X(t)]^+ = 0$ is worthless.
• Repay the domestic bank loan with interest for K DOM cash.

That leaves $-[X(T) - K]^+ + [K - X(T)]^+ - K + X(T) = 0$ and no unfunded liabilities. The positive amount obtained at $t = 0$ is therefore an arbitrage profit prohibited by Axiom 1.

Case 2: $C(0) - P(0) < X(0)/R_f - K/R_d$.

At $t = 0$, starting with no money, perform the following trades:
• Short-sell P for $P(0)$ cash.
• Buy C for $C(0)$ cash.
• Borrow $1/R_f$ FRN from the foreign bank at R_f.
• Convert $1/R_f$ FRN to $X(0)/R_f$ DOM at spot exchange rate $X(0)$.
• Deposit K/R_d DOM cash into the domestic bank.

That leaves $X(0)/R_f - K/R_d - C(0) + P(0) > 0$ DOM cash, a net profit to keep.

At $t = T$, clear all debts as follows:
• Withdraw K DOM cash from the domestic bank, including interest.
• If $K \geq X(T)$, then
 – Do not exercise the worthless C, as $C(T) = [X(T) - K]^+ = 0$.
 – Cash settle P for its value $P(T) = [K - X(T)]^+ = K - X(T)$.
 – Convert $X(T)$ DOM to 1 FRN cash at the market rate $X(T)$.
• Else $K < X(T)$, so
 – Short-sold P expires worthless, as $P(T) = [K - X(T)]^+ = 0$.
 – Exercise C to convert K DOM to 1 FRN cash at rate K.
• Repay the foreign bank loan with interest for 1 FRN cash.

That leaves $[K - X(T)]^+ - [X(T) - K]^+ + K - X(T) = 0$ and no unfunded liabilities. The positive amount obtained at $t = 0$ is therefore an arbitrage profit prohibited by Axiom 1.

Conclude that Eq.1.20 holds. \[\square\]

7. (a) Prove that the plus-part function satisfies Eq.1.17:

$$[X]^+ - [-X]^+ = X,$$

for any number X.

(b) Apply the identity in part (a) to the payoff values of European-style
Call and Put options for \(S \) at strike price \(K \) and expiry \(T \) to show Eq.1.18:

\[
C(T) - P(T) = S(T) - K.
\]

Solution:

(a) Let \(X \) be any number. Then either \(X < 0 \), \(X = 0 \), or \(X > 0 \). Check
all three possibilities:

\[
[X]^+ - [-X]^+ = \begin{cases} 0 - (-X) = X, \quad X < 0, \\ 0 + 0 = X, \quad X = 0, \\ X - 0 = X, \quad X > 0, \end{cases}
\]

in all cases.

(b) Let \(X = S(T) - K \). Then \(C(T) = [S(T) - K]^+ = [X]^+ \) while \(P(T) = [K - S(T)]^+ = [-X]^+ \). Apply part (a) to conclude that

\[
C(T) - P(T) = [X]^+ - [-X]^+ = X = S(T) - K,
\]

as claimed.

8. Plot the payoff and profit graphs for the following colorfully named option
portfolios as a function of the price \(S(T) \) at expiry time \(T \):

(a) **Long straddle:** buy one Call and one Put on \(S \) with the same expiry
\(T \) and at-the-money strike price \(K \approx S(0) \). For what values of \(S(T) \) will
this be profitable?

(b) **Long strangle:** buy one Call at \(K_c \) and one Put at \(K_p \) with the same
expiry \(T \) but with out-of-the-money strike prices \(K_p < S(0) < K_c \). How
does its profitability compare with that of a long straddle?

Solution:

(a) See the payoff graph for a Long straddle in Figure 1.

The straddle will be profitable if \(S(T) \) is sufficiently far from \(S(0) \) in either
direction, namely more than the sum of the two premiums.

(b) See the payoff graph for a Long strangle in Figure 2.

Since the two strangle options are out-of-the-money, their premiums are
lower than the at-the-money options in a straddle, making the strangle
portfolio cheaper. However, for the strangle to be profitable, the stock
price may have to move farther.

9. A **butterfly spread** is a portfolio of European-style Call options purchased
at time \(t = 0 \) with the same expiry \(t = T \) but at three strike prices
\(L < M < H \), where \(M = \frac{1}{2}(L + H) \):
Figure 1: Payoff and profit for a Long straddle portfolio \(X = C + P \).

- buy one Call \(C_L \) at strike price \(L \) for \(C_L(0) \),
- buy one Call \(C_H \) at strike price \(H \) for \(C_H(0) \),
- sell two Calls \(C_M \) short at strike price \(M \) for \(2C_M(0) \).

(a) Plot the payoff graph for the butterfly spread at expiry when its price is \(C_L(T) + C_H(T) - 2C_M(T) \). Mark the three strike prices on the \(S(T) \) axis.

(b) Conclude from the graph for (a) that \(C_M(0) < \frac{1}{2}[C_L(0) + C_H(0)] \).

Solution: (a) See the payoff graph for a butterfly spread in Figure 3.

(b) The net cost of a butterfly spread at \(t = 0 \) is \(2C_M(0) - C_L(0) - C_H(0) \). If \(C_M(0) \geq \frac{1}{2}[C_L(0) + C_H(0)] \) then this net cost is greater than or equal to zero. But its value at \(t = T \) is nonnegative in all states and positive in some states, namely if \(L < S(T) < H \), so this is an arbitrage. Conclude by the no arbitrage Axiom 1 that \(C_M(0) < \frac{1}{2}[C_L(0) + C_H(0)] \). \(\square \)

10. An iron condor is a portfolio \(C_1 - C_2 - P_3 + P_4 \) of four European-style options. To construct it, simultaneously buy one Call at \(K_1 \), sell one Call at \(K_2 \), sell one Put at \(K_3 \), and buy one Put at \(K_4 \), all with the same expiry \(T \) but with \(K_1 < K_2 < K_3 < K_4 \).

(a) Plot or describe the payoff graph for an iron condor portfolio at expiry.
Figure 2: Payoff and profit for a Long strangle portfolio $Y = C_{K_C} + P_{K_P}$.

(b) Assuming no arbitrage, prove that the portfolio must have a positive net premium.

(c) Assuming no arbitrage, find inequalities bounding the maximum profit and the maximum loss of an iron condor portfolio at expiry.

Solution:

(a) Let $icp(S(T))$ be the payoff at expiry T of the iron condor portfolio, as a function of the underlying asset’s price $S(T)$. By Eqs.1.8 and 1.9,

$$icp(s) = C_1(T) - C_2(T) - P_3(T) + P_4(T)$$

$$= [s - K_1]^+ - [s - K_2]^+ - [K_3 - s]^+ + [K_4 - s]^+$$

$$= \begin{cases}
(K_4 - K_3), & s \leq K_1, \\
(s - K_1) + (K_4 - K_3), & K_1 < s < K_2, \\
(K_2 - K_1) + (K_4 - K_3), & K_2 \leq s \leq K_3, \\
(K_2 - K_1) + (K_4 - s), & K_3 < s < K_4, \\
(K_2 - K_1), & s \geq K_4.
\end{cases}$$

(b) From part (a), the payoff is strictly positive. By Corollary 1.3, the net premium must therefore be positive.

(c) Let $y = C_1(0) + P_4(0) - C_2(0) - P_3(0)$ be the net premium for the iron condor portfolio. By part (b) it must be positive, and it must be
Payoff of Butterfly Spread \(C(T) = C_L(T) + C_H(T) - 2C_M(T) \)

Individual European Call Option Payoffs

Figure 3: Payoffs for the butterfly spread \(C = C_L + C_H - 2C_M \) and its constituent parts.

subtracted from the payoff to give the profit at expiry. Hence the profit must be less than \((K_2 - K_1) + (K_4 - K_3)\).

The minimum net value at expiry, which is the worst possible loss, will be \(\min\{(K_2 - K_1), (K_4 - K_3)\} - y\). But \(y\) is bounded above by the no arbitrage assumption since if \(y > (K_2 - K_1) + (K_4 - K_3)\), then the profit graph will lie entirely below the \(x\)-axis. Such an asset is guaranteed to lose, so selling it short would be an arbitrage opportunity. Hence \(y \leq (K_2 - K_1) + (K_4 - K_3)\), so the loss is bounded below by

\[
\min\{(K_2 - K_1), (K_4 - K_3)\} - y \geq -\max\{(K_2 - K_1), (K_4 - K_3)\}.
\]

Equality holds for \(S(T) \leq K_1\) if \(K_4 - K_3\) is bigger, or for \(S(T) \geq K_4\) if \(K_2 - K_1\) is bigger. \(\square\)