Math 456: Introduction to Financial Mathematics

Homework Set 3

Due 23 October 2023

1. Suppose that $S(t, \omega)$, $0 \leq t \leq T$ is the price of a risky asset S, and that the riskless return over time $[0, T]$ is R. Model the future at time $t = T$ using $\Omega = \{\uparrow, \downarrow\}$ and assume that $S(T, \downarrow) < S(T, \uparrow)$.

(a) Use the no-arbitrage Axiom 1 to conclude that $S(T, \downarrow) < RS(0) < S(T, \uparrow)$.

(b) Use the Fair Price Theorem 1.4 to prove the same inequalities.

Solution: (a) First exclude the case $RS(0) \leq S(T, \downarrow) < S(T, \uparrow)$, as it offers the following arbitrage opportunity:

- At time $t = 0$, borrow $S(0)$ from the bank and buy one share of S. Initial cost is 0.
- At time $t = T$, sell S for $S(t, \omega)$ and repay the loan with interest for $RS(0)$. The net result is $S(T, \omega) - RS(0)$.

The net at expiry is either $S(T, \downarrow) - RS(0) \geq 0$ or $S(T, \uparrow) - RS(0) > 0$, an arbitrage opportunity as claimed, forbidden by Axiom 1.

Second, exclude the possibility $S(T, \downarrow) < S(T, \uparrow) \leq RS(0)$ as it also provides an arbitrage opportunity:

- At time $t = 0$, sell S short for $S(0)$ and deposit the money in the bank. Initial cost is again 0.
- At time $t = T$, withdraw the principal and interest $RS(0)$ from the bank and buy S to cover the short for $S(t, \omega)$. The net result is $RS(0) - S(T, \omega)$.

The net at expiry in this case is either $RS(0) - S(T, \uparrow) \geq 0$ or $RS(0) - S(T, \downarrow) > 0$ giving an arbitrage opportunity as claimed, forbidden by Axiom 1.

Conclude that $S(T, \downarrow) < RS(0) < S(T, \uparrow)$.

(b) From Theorem 1.4 and the definition of expectation,

$$RS(0) = \Pr(\downarrow)S(T, \downarrow) + \Pr(\uparrow)S(T, \uparrow)$$
But $0 < \Pr(\downarrow) < 1$ since otherwise the future is certain, and thus also $0 < \Pr(\uparrow) < 1$ since $\Pr(\uparrow) = 1 - \Pr(\downarrow)$. Conclude that $RS(0)$ lies strictly inside the interval $[S(T, \downarrow), S(T, \uparrow)]$, as claimed. □

2. In Exercise 1 above, model the future at time $t = T$ using the N-step binomial model $\Omega = \{\omega_0, \omega_1, \ldots, \omega_N\}$ and assume that $S(T, \omega_k) = S(0)u^kd^{N-k}$, where $S(0) > 0$ is the spot price and $0 < d < u$ are the up factor and down factor, respectively, over one time step T/N.

(a) Use the no-arbitrage Axiom 1 to conclude that $d < R^{1/N} < u$.

(b) Use the Fair Price Theorem 1.4 to prove the same inequalities.

Solution: First note that $0 < d < u$ and $S(0) > 0$ together imply that $0 < S(T, \omega_0) = S(0)d^N < S(T, \omega_1) < \cdots < S(T, \omega_N) = S(0)u^N$.

(a) If $R^{1/N} \leq d < u$, then $R \leq d^N < u^N$, which implies

$$RS(0) \leq S(T, \omega_0); \quad RS(0) < S(T, \omega_k), \quad k = 1, \ldots, N,$$

so that borrowing $S(0)$ to buy S at $t = 0$ will result in an arbitrage profit at $t = T$. Similarly, if $d < u \leq R^{1/N}$, then $d^N < u^N \leq R$, which implies

$$RS(0) \geq S(T, \omega_N); \quad RS(0) > S(T, \omega_k), \quad 0 \leq k < N,$$

so that selling S short for $S(0)$ and investing the money risklessly at $t = 0$ will result in an arbitrage profit at $t = T$.

Both cases are forbidden by Axiom 1, so $d < R^{1/N} < u$.

(b) From Theorem 1.4 and the definition of expectation,

$$RS(0) = \mathbb{E}(S(T)) = \sum_{k=0}^{N} \Pr(\omega_k)S(T, \omega_k) = S(0)\sum_{k=0}^{N} \Pr(\omega_k)u^kd^{N-k}.$$

Dividing by $S(0) > 0$ simplifies this to

$$R = \sum_{k=0}^{N} \Pr(\omega_k)u^kd^{N-k}.$$

Now $0 < d < u$ implies that $d^N < ud^{N-1} < \cdots < u^{N-1}d < u^N$, and the probabilities lie in $[0, 1]$ and sum to 1, so the right-hand side is a convex combination of points in the interval $[d^N, u^N]$. Since the asset is risky, at least two of the states have positive probabilities. The convex combination must therefore lie strictly inside the interval, so

$$d^N < R < u^N,$$

from which it follows that $d < R^{1/N} < u$ as claimed. □
3. Suppose that a portfolio \(X \) contains risky stock \(S \) and riskless bond \(B \) in amounts \(h_0, h_1 \):

\[
X(t, \omega) = h_0 B(t, \omega) + h_1 S(t, \omega).
\]

Model the future at time \(t = T \) using \(\Omega = \{\uparrow, \downarrow\} \), assuming only that
\(S(T, \uparrow) \neq S(T, \downarrow) \) and that \(B(T, \uparrow) = B(T, \downarrow) = R \). Compute \(h_0 \) and \(h_1 \) in terms of all the other quantities. (Hint: use Macsyma to derive Eq.3.1.)

Solution: Set up the system of equations at \(t = T \):

\[
\begin{align*}
X(T, \uparrow) &= h_0 B(T, \uparrow) + h_1 S(T, \uparrow) = h_0 R + h_1 S(T, \uparrow) \\
X(T, \downarrow) &= h_0 B(T, \downarrow) + h_1 S(T, \downarrow) = h_0 R + h_1 S(T, \downarrow)
\end{align*}
\]

Use these Macsyma commands to solve the system:

\[
\begin{align*}
eq 1: & \quad xTu=h0*R+h1*sTu; /* Up state equation */ \\
eq 2: & \quad xTd=h0*R+h1*sTd; /* Down state equation */ \\
h0h1: & \quad solve([eq1, eq2], [h0, h1]); /* Solve for h0, h1 */
\end{align*}
\]

That results in this output:

\[
[[h0=-sTd*xTu-sTu*xTd)/(sTu-sTd)*R), \\
h1=(xTu-xTd)/(sTu-sTd)]]
\]

Writing the Macsyma solution in the original notation gives

\[
h_0 = \frac{S(T, \uparrow)X(T, \downarrow) - S(T, \downarrow)X(T, \uparrow)}{(S(T, \uparrow) - S(T, \downarrow))R}; \quad h_1 = \frac{X(T, \uparrow) - X(T, \downarrow)}{S(T, \uparrow) - S(T, \downarrow)}.
\]

4. In Exercise 3 above, suppose that \(X \) is a European-style Call option for \(S \) with expiry \(T \) and strike price \(K \). Use the payoff formula \(X(T) = \lfloor S(T) - K \rfloor^+ \) in the equation for \(h_1 \) to prove that

\[
0 \leq h_1 \leq 1.
\]

Conclude that, in this model of the future, a European-style Call option for \(S \) is equivalent to a portfolio containing part of a share of \(S \) plus or minus some cash.

Solution: Substitute the payoff formula into the equation for \(h_1 \), then add and subtract \(K \) in the denominator to get:

\[
h_1 = \frac{X(T, \uparrow) - X(T, \downarrow)}{S(T, \uparrow) - S(T, \downarrow)} = \frac{[S(T, \uparrow) - K]^+ - [S(T, \downarrow) - K]^+}{(S(T, \uparrow) - K) - (S(T, \downarrow) - K)}.
\]

It may be assumed that \(S(T, \uparrow) > S(T, \downarrow) \), since the states can be switched without changing the value of \(h_1 \). Then there are three cases to consider:
Case 1: If $S(T, \uparrow) > S(T, \downarrow) > K$, then both plus-parts are positive, so

$$h_1 = \frac{(S(T, \uparrow) - K) - (S(T, \downarrow) - K)}{(S(T, \uparrow) - K) - (S(T, \downarrow) - K)} = 1.$$

Case 2: If $K \geq S(T, \uparrow) > S(T, \downarrow)$, then both plus-parts are zero, so

$$h_1 = 0 - 0 = 0.$$

Case 3: If $S(T, \uparrow) > K \geq S(T, \downarrow)$, then the first plus-part is positive but the second is zero, so

$$h_1 = \frac{(S(T, \uparrow) - K) - 0}{(S(T, \uparrow) - K) - (S(T, \downarrow) - K)}.$$

But the denominator is $(S(T, \downarrow) - K) \leq 0$, which implies

$$(S(T, \uparrow) - K) - (S(T, \downarrow) - K) \geq (S(T, \uparrow) - K) > 0,$$

so the positive denominator is no smaller than the positive numerator, so $0 < h_1 \leq 1$.

Conclude that $0 \leq h_1 \leq 1$ in all cases. \qed

5. In Exercise 3 above, suppose that X is a European-style Put option for S with expiry T and strike price K. Use the payoff formula $X(T) = [K - S(T)]^+$ in the equation for h_1 to prove that

$$-1 \leq h_1 \leq 0.$$

Conclude that, in this model of the future, a European-style Put option for S is equivalent to a portfolio containing part of a share of S sold short plus or minus some cash.

Solution: Substitute the payoff formula into the equation for h_1, multiply numerator and denominator by -1, and then add and subtract K in the denominator to get:

$$h_1 = \frac{X(T, \uparrow) - X(T, \downarrow)}{S(T, \uparrow) - S(T, \downarrow)} = -\frac{[K - S(T, \uparrow)]^+ - [K - S(T, \downarrow)]^+}{(K - S(T, \uparrow)) - (K - S(T, \downarrow))}.$$

It may be assumed that $S(T, \uparrow) > S(T, \downarrow)$, since the states can be switched without changing the value of h_1. Then there are three cases to consider:

Case 1: If $K > S(T, \uparrow) > S(T, \downarrow)$, then both plus-parts are positive, so

$$h_1 = -\frac{(K - S(T, \uparrow)) - (K - S(T, \downarrow))}{(K - S(T, \uparrow)) - (K - S(T, \downarrow))} = -1.$$
Case 2: If $S(T,↑) > S(T,↓) \geq K$, then both plus-parts are zero, so

$$h_1 = -\frac{0 - 0}{(K - S(T,↑)) - (K - S(T,↓))} = 0.$$

Case 3: If $S(T,↑) \geq K > S(T,↓)$, then the first plus-part is zero but the second is positive, so

$$h_1 = -\frac{0 - (K - S(T,↓))}{(K - S(T,↑)) - (K - S(T,↓))} = \frac{(K - S(T,↓))}{(K - S(T,↑)) - (K - S(T,↓))}.$$

But the denominator is $(K - S(T,↑)) \leq 0$, which implies

$$(K - S(T,↑)) - (K - S(T,↓)) \leq -(K - S(T,↓)) < 0,$$

so the negative denominator has no smaller absolute value than the positive numerator, so $-1 \leq h_1 < 0$.

Conclude that $-1 \leq h_1 \leq 0$ in all cases.

Remark. An alternative proof uses the identity $y = [y]^+ - [-y]^+$ which is true for any y. Then

$$(S(T,ω) - K) = [S(T,ω) - K]^+ - [K - S(T,ω)]^+,$$

so

$$[K - S(T,ω)]^+ = [S(T,ω) - K]^+ - (S(T,ω) - K),$$

and thus

$$h_1 = \frac{[S(T,↑) - K]^+ - [S(T,↓) - K])^+}{(S(T,↑) - K) - (S(T,↓) - K)} - 1.$$

The result now follows from the Call h_1 inequalities. \qed

6. Suppose that $C(0)$ and $P(0)$ are the premiums for European-style Call and Put options, respectively, on an asset S with the following parameters: expiry at $T = 1$ year, spot price $S(0) = 90$, strike price $K = 95$. Assume that the riskless annual percentage rate is $r = 0.02$, and the volatility for S is $\sigma = 0.15$, and that these will remain constant from now until expiry.

(a) Use a LibreOffice Calc spreadsheet to implement the Cox-Ross-Rubinstein (CRR) model to compute $C(0)$ and $P(0)$ with $N = 10$ time steps, using the backward pricing formula in Eq.3.18. (Hint: compare output with CRReurAD() to check for bugs.)

(b) Use the Octave function CRReurAD() with $N = 10$, $N = 100$, and $N = 1000$ time steps to compute $C(0)$ and $P(0)$.

5
(c) Repeat part (b) with the Octave function \texttt{CRReur()} on p.88, again using \(N = 10 \), \(N = 100 \), and \(N = 1000 \) time steps to compute \(C(0) \) and \(P(0) \). Profile the time required to compute them, and compare the time and the output with that of \texttt{CRReurAD()}.

(d) Compare the prices from parts (b) and (c). Is it justified to use \(N = 1000 \)? Is \(N = 10 \) sufficiently accurate?

\textbf{Solution:} (a) See the spreadsheet \texttt{CRR.ods} in the programs archive. With \(N = 10 \) time steps, rounding to five significant digits, it computes \(C(0) = $4.1733 \) and \(P(0) = $7.2922 \).

(b) Implement the program \texttt{CRReurAD()} on p.76, input the parameters, and compute the CRR approximations at \(N = 10 \), \(N = 100 \), and \(N = 1000 \) with the commands

\begin{verbatim}
T=1; S0=90; K=95; r=0.02; v=0.15;
[C0,P0]=CRReurAD(T,S0,K,r,v,10); C(1,1),P(1,1) % 4.1733, 7.2922
[C0,P0]=CRReurAD(T,S0,K,r,v,100); C(1,1),P(1,1) % 4.0572, 7.1761
[C0,P0]=CRReurAD(T,S0,K,r,v,1000); C(1,1),P(1,1) % 4.0555, 7.1744
\end{verbatim}

At \(N = 10 \) time steps it returns \(C(0) = $4.1733 \) and \(P(0) = $7.2922 \), in agreement with the spreadsheet. After \(N = 100 \) time steps, \(C(0) = $4.0572 \) and \(P(0) = $7.1761 \). After \(N = 1000 \) time steps, \(C(0) = $4.0555 \) and \(P(0) = $7.1744 \). In all cases the computations are almost instantaneous, requiring no noticeable time.

(c) The Octave program \texttt{CRReur()} on p.88 uses the backward induction formula to compute Call and Put premiums. It therefore fills two recombining binomial trees of depth \(N \) at a cost of \(O(N^2) \) compared with the \(O(N) \) cost of the Arrow-Debreu expansion method.

Input the parameters and compute the CRR approximations at \(N = 10 \), \(N = 100 \), and \(N = 1000 \) with the commands

\begin{verbatim}
T=1; S0=90; K=95; r=0.02; v=0.15;
[C,P]=CRReur(T,S0,K,r,v,10); C(1,1),P(1,1) % 4.1733, 7.2922
profile on; CRReur(T,S0,K,r,v,10); profshow % 0.013 seconds
[C,P]=CRReur(T,S0,K,r,v,100); C(1,1),P(1,1) % 4.0572, 7.1761
profile on; CRReur(T,S0,K,r,v,100); profshow % 1.05 seconds
[C,P]=CRReur(T,S0,K,r,v,1000); C(1,1),P(1,1) % 4.0555, 7.1744
profile on; CRReur(T,S0,K,r,v,1000); profshow % 103 seconds
\end{verbatim}

Note that the outputs are pairs of matrices, so that to get just the premiums it is necessary to extract just the \((1,1)\) element.

At \(N = 10 \) time steps it almost instantaneously returns \(C(0) = $4.1733 \) and \(P(0) = $7.2922 \), in agreement with the spreadsheet. Profiled time was 0.013 seconds.
With $N = 100$ time steps it very quickly computes $C(0) = 4.0572$ and $P(0) = 7.1761$. Profiled time was 1.05 seconds.

With $N = 1000$ time steps it takes a considerably longer time to compute $C(0) = 4.0555$ and $P(0) = 7.1744$. Profiled time was 102 seconds.

Note that the ratios of profiled times agree with the $O(N^2)$ complexity estimate.

(d) $N = 100$ seems justified since the prices are quite different from the $N = 10$ values. It seems unjustified to use $N = 1000$, which costs much more time and space (using the backward induction algorithm) but gives almost the same result as $N = 100$. □

7. Compare the prices from parts (a) and (b) of previous Exercise 6 with the Black-Scholes prices computed using Eqs. 2.25 and 2.26. Plot the logarithm of the differences against $\log N$ to estimate the rate of convergence. (Hint: Use the programs in Chapter 2, Section 2.4.)

Solution: Use the parameters from Exercise 6 in the Octave program `BS()` on p.34, as follows:

```octave
T=1; S0=90; K=95; r=0.02; v=0.15; [C0,P0]=BS(T,S0,K,r,v)
```

This returns $C_{BS} = C0 = 4.0548$ and $P_{BS} = P0 = 7.1736$. Now compute the logarithms of the differences as a function of $\log N$:

```octave
Ns=[10,100,1000]; log(Ns)
C0=4.0548; CCRR=[4.1733,4.0572,4.0555]; log(abs(CCRR-C0))
P0=7.1736; PCRR=[7.2922,7.1761,7.1744]; log(abs(PCRR-P0))
```

The output is tabulated below:

| N | $\log N$ | $\log |C_{CRR} - C_{BS}|$ | $\log |P_{CRR} - P_{BS}|$ |
|------|----------|--------------------------|--------------------------|
| 10 | 2.3026 | -2.1328 | -2.1320 |
| 100 | 4.6052 | -6.0323 | -5.9915 |
| 1000 | 6.9078 | -7.2644 | -7.1309 |

Finally, generate the log-log plots:

```octave
plot(log(Ns),log(abs(CCRR-C0))); title("Call Difference"); xlabel("log N"); ylabel("log|C_{CRR}-C_{BS}|"); figure;
plot(log(Ns),log(abs(PCRR-P0))); title("Put Difference"); xlabel("log N"); ylabel("log|P_{CRR}-P_{BS}|");
```

The results may be seen in Figure 1. For both Call and Put differences, the graphs are close to lines of slope -1, suggesting that the difference between Black-Scholes and its N-step CRR approximation is $O(N^{-1})$. This may be quantified by regression using `polyfit(x,y,1)`:
Figure 1: (From Exercise 7) Log-log plots showing the differences between Black-Scholes prices and their N-step CRR approximations, for certain European-style Call and Put options, as a function of N.

polyfit(log(Ns),log(abs(CRR-C0)),1) \ % -1.114310 -0.011598
polyfit(log(Ns),log(abs(PCRR-P0)),1) \ % -1.085497 -0.085887

The first output number is the slope of the least-squares line fitting the data, in both cases close to -1. The second is the intercept; it is an estimate for the logarithm of the constant in the $O(N^{-1})$ rate.

Remark. Using only 5 significant digits introduces substantial round-off error at large N, where the differences are small. This is unavoidable since the parameters are only specified to 2 or 3 significant digits.

8. Derive 3.32 on p.79:

\[
q = \frac{1}{2} + \frac{r + \frac{\sigma^2}{2}}{2\sqrt{T/N}} + O\left(\frac{T}{N}\right).
\]

Solution: Recall that $q = (u - 1/R)/(u - 1/u)$. Using Taylor’s approximation in the numerator gives

\[
[1 + \sigma\sqrt{T/N} + \frac{\sigma^2}{2} T/N + O(\sqrt{T/N}^3)] - [1 - \frac{rT}{N} + O(\frac{T}{N})^2],
\]

while in the denominator it gives

\[
[1 + \sigma\sqrt{T/N} + \frac{\sigma^2}{2} T/N + O(\sqrt{T/N}^3)] - [1 - \sigma\sqrt{T/N} + \frac{\sigma^2}{2} T/N + O(\sqrt{T/N}^3)].
\]
Canceling terms and simplifying the ratio gives

\[q = \frac{\sigma \sqrt{\frac{T}{N}} + \left(r + \frac{\sigma^2}{2} \right) \frac{T}{N} + O \left(\sqrt{\frac{T}{N}} \right) + O \left(\left[\frac{T}{N} \right]^2 \right)}{2 \sigma \sqrt{\frac{T}{N}} + O \left(\sqrt{\frac{T}{N}} \right)} = \frac{1}{2} + \frac{r + \frac{\sigma^2}{2}}{2 \sigma} \sqrt{\frac{T}{N}} + O \left(\frac{T}{N} \right), \]

as claimed.

9. Use the CRR approximation with \(N = 4 \) to compute the European-style Call option premiums at several hundred equally spaced spot prices \(75 \leq S_0 \leq 115 \), with expiry \(T = 1 \), strike \(K = 95 \), \(r = 0.02 \), and \(\sigma = 0.15 \).

(a) Plot the values against \(S_0 \).

(b) At what values of \(S_0 \) in that range does the graph appear to be nonsmooth?

(c) Compute the points of nondifferentiability for \(S_0 \) in [75, 115].

Solution: (a) Use `CRReurAD()` in the following Octave code:

```octave
T=1; K=95; r=0.02; v=0.15; N=4; m=401;
S=linspace(75,115,m); CS=zeros(size(S));
for i=1:m
    S0=S(i); [C0,P0]=CRReurAD(T,S(i),K,r,v,N); CS(i)=C0;
end
plot(S,CS); title("CRR with N=4");xlabel("S0");ylabel("C0");
```

See the result in Figure 2.

(b) The graph appears piecewise linear with joints \(\hat{S}_0 \in \{82, 95, 110\} \) where the Call premium is not differentiable with respect to \(S_0 \).

(c) Compute the joints, or points of nondifferentiability \(\hat{S}_0 \) nearest \(K \), using Eq.3.39 and \(j \in \{N/2 - 1, N/2, N/2 + 1\} = \{1, 2, 3\} \):

\[
\hat{S}_0 \in \left\{ \frac{K}{u^{2(j+1)-N}}, \frac{K}{u^{2j-N}}, \frac{K}{u^{2(j-1)-N}} \right\} = \{d^2K, K, u^2K\},
\]

where \(1/d = u = \exp(\sigma \sqrt{T/N}) \). With the given parameters,

\[
u = \exp\left(0.15\sqrt{1/4}\right) = 1.0779, \quad \implies \hat{S}_0 \in \{81.767, 95, 110.37\},
\]

in good agreement with the visual estimate.

10. Compute the CRR option premiums and Greeks for European-style Call and Put options on a risky asset with the following parameters: spot price \$90, strike price \$95, expiry in 1 year, annual riskless rate 2%, and volatility 15%. Use \(N = 100 \) steps. Justify the method used.

Solution: First compute the option premiums with `CRReurAD()`:
Figure 2: (From Exercise 9) CRR approximation with \(N = 4 \) to the European-style Call option premium \(C(0) \), as a function of spot price \(S(0) \).

\[
T=1; \ S0=90; \ K=95; \ r=0.02; \ v=0.15; \ N=100;
\]

\[
[C0,P0]=
\]

For \(\Delta \) and \(\Gamma \), use the interpolation method on p.83:

\[
h0=2*S0*v*sqrt(T/N); \quad \% \text{critical h}
\]

\[
u2=exp(2*v*sqrt(T/N)); \quad \% \text{squared up factor}
\]

\[
x=[S0/u2, \ S0, \ S0*u2]-S0; \quad \% \text{shifted abscissas}
\]

\[
[C0,P0]=
\]

\[
[C0u,P0u]=
\]

\[
[C0d,P0d]=
\]

\[
yC=[C0d, \ C0, \ C0u]; \quad \% \text{Call ordinates}
\]

\[
p=polyfit(x,yC,2); \quad \text{DeltaC=p(2), GammaC=2*p(1)}
\]

\[
yP=[P0d, \ P0, \ P0u]; \quad \% \text{Put ordinates}
\]

\[
p=polyfit(x,yP,2); \quad \text{DeltaP=p(2), GammaP=2*p(1)}
\]

This is necessary because the approximation is not differentiable with respect to \(S_0 \).

For the other Greeks, use the centered difference approximation to the derivative with \(h \) set to 10% of the abscissa value:

\[
h=0.10*T; \quad \% \text{for ThetaC, ThetaP}
\]

\[
[C0u,P0u]=
\]

\[
[C0d,P0d]=
\]
ThetaC=-(C0u-C0d)/(2*h), ThetaP=-(P0u-P0d)/(2*h)

\[h = 0.10*v; \] % for VegaC, VegaP
\[[C0u,P0u] = CRReurAD(T,S0,K,r,v+h,N); \]
\[[C0d,P0d] = CRReurAD(T,S0,K,r,v-h,N); \]
VegaC=(C0u-C0d)/(2*h), VegaP=(P0u-P0d)/(2*h)
\[h = 0.10*r; \] % for RhoC, RhoP
\[[C0u,P0u] = CRReurAD(T,S0,K,r+h,v,N); \]
\[[C0d,P0d] = CRReurAD(T,S0,K,r-h,v,N); \]
RhoC=(C0u-C0d)/(2*h), RhoP=(P0u-P0d)/(2*h)

Since the centered difference approximation has \(O(h^2) \approx 1\%\) relative error, expect roughly two significant digits of accuracy. Much smaller values of \(h\) are not justified since the option premiums are only \(O(1/N) \approx 1\%\) accurate as shown in Exercise 7.

The results are tabulated below:

<table>
<thead>
<tr>
<th>Option</th>
<th>Delta</th>
<th>Gamma</th>
<th>Theta</th>
<th>Vega</th>
<th>Rho</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call</td>
<td>4.0572</td>
<td>0.43987</td>
<td>-0.029063</td>
<td>36.298</td>
<td>35.457</td>
</tr>
<tr>
<td>Put</td>
<td>7.1761</td>
<td>-0.56013</td>
<td>0.029063</td>
<td>36.298</td>
<td>-57.661</td>
</tr>
</tbody>
</table>

Comparison with the Black-Scholes premiums and Greeks computed in Chapter 2, Exercise 10 shows good agreement.