1. Suppose that C and P are European-style Call and Put options, respectively, at strike price K and expiry T, for a risky underlying asset S with spot price S_0. Show that $0 < C(0) \leq S_0$ and $0 < P(0) \leq K$. (Hint: construct an arbitrage otherwise.)

Solution: First note that $C(0) > 0$ and $P(0) > 0$ are consequences of Theorem 1.1.

Next, suppose that $C(0) > S_0$. Sell one C and buy one S at time $t = 0$, keeping the surplus $C(0) - S_0 > 0$. At expiry T, if the buyer exercises C, collect $K > 0$ in exchange for S. Otherwise, sell S for $S(T) > 0$.

Finally, suppose that $P(0) > K$. Sell one P for $P(0)$ at $t = 0$ and keep the proceeds. At expiry $t = T$, if the buyer exercises P, receive that S at strike price K, leaving a surplus $P(0) - K > 0$ and sell it for $S(T) > 0$, netting additional profit. Otherwise, keep the original $P(0)$ with no further obligations.

In all cases there is a positive payoff with no initial investment. Conclude by the no-arbitrage axiom that $0 < C(0) \leq S_0$ and $0 < P(0) \leq K$. □

2. Show that the Eq.7.11 and Eq.7.12 probabilities produce the Arrow-Debreu spot prices $\lambda(n, j)$ in Eq.7.10 using Jamshidian’s forward induction, Eq.3.21 on p.69.

Solution: This may be proved by induction on n. For $n = 0$, the only Arrow-Debreu spot price is $\lambda(0, 0) = 1$, so it agrees with the value $Q(0, 0)/R^0 = 1$ from Jackwerth’s construction.

Now suppose that the values $\{\lambda(n-1, j) : j = 0, 1, \ldots, n-1\}$ produced by Jamshidian’s induction agree with Jackwerth’s values and that p and $1 - p$ are given by Eq.7.11 and Eq.7.12, respectively. (As usual, take $\lambda(n, j) = 0$ if $j < 0$ or $j > n$.) Compute $\lambda(n, j)$ for $j = 0, 1, \ldots, n$ by substituting the
expressions from Jackwerth’s construction into Eq.3.21:

\[\lambda(n,j) = 1 - p(n-1,j) \lambda(n-1,j) + \frac{p(n-1,j-1)}{R} \lambda(n-1,j-1) \]

\[= \frac{1}{R} \left[1 - w \left(\frac{j}{n} \right) \right] Q(n,j) + \frac{1}{R} \left[\frac{Q(n,j)}{Q(n-1,j-1)} \right] Q(n-1,j-1) \]

\[= \left[\left(1 - w \left(\frac{j}{n} \right) \right) + w \left(\frac{j}{n} \right) \right] \frac{Q(n,j)}{R^n} = \frac{Q(n,j)}{R^n}. \]

Thus Jamshidian’s forward induction with Jackwerth’s probabilities produces Jackwerth’s Arrow-Debreu spot prices.

3. Compute implied volatility for the data in Table 7.1 using both Black-Scholes and CRR with \(N = 20 \). Tabulate and compare the results.

Solution: Use the Octave code that produced Figure 7.1, with the following modifications:

```octave
Ks=40:46; Ts=[3,9,21,35,63]; % strikes and days to expiry
C=[4.14 4.35 4.85 4.60 5.15; 3.20 3.42 3.50 4.00 4.35; 2.24 2.72 2.89 3.15 3.65; 1.30 1.51 1.96 2.44 2.87; 0.63 0.86 1.34 1.71 2.39; 0.23 0.45 0.84 1.24 1.76; 0.07 0.22 0.52 0.88 1.39]; % Call premiums on 2021-12-14
S0=44.13; r=0.05; % spot price and riskless APR on 2021-12-14
VimpBS=zeros(length(Ks),length(Ts)); % BS implied volatilities
VimpCRR=zeros(length(Ks),length(Ts)); % CRR implied volatilities
minv=0.01; maxv=0.99; tol=0.00001; % bisection parameters
for col=1:length(Ts)
    T=Ts(col)/365; % time to expiry in years
    for row=1:length(Ks)
        f=@(v) BS(T,S0,Ks(row),r/100,v); % Black-Scholes Call
        VimpBS(row,col)=bisection(f,C(row,col),minv,maxv,tol);
        g=@(v) CRReur(T,S0,Ks(row),r/100,v,20)(1,1); % CRR Call
        VimpCRR(row,col)=bisection(g,C(row,col),minv,maxv,tol);
    end
end
```

The output is in Table 1:

Remark. As expected, the two methods produce nearly identical values. To further check the results and the code, compare the Black-Scholes (BS) values with the \(\sigma \) columns of Table 7.1.
Table 1: Implied volatilities by CRR ($N = 20$) and Black-Scholes methods, from December 14, 2021 closing prices for BAC American-style Call options at $r = 0.05\%$ and $S_0 = $44.13.

<table>
<thead>
<tr>
<th>Strike</th>
<th>Dec17 CRR</th>
<th>Dec23 CRR</th>
<th>Jan7 CRR</th>
<th>Jan21 CRR</th>
<th>Feb18 CRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>0.50</td>
<td>0.54</td>
<td>0.54</td>
<td>0.36</td>
<td>0.37</td>
</tr>
<tr>
<td>41</td>
<td>0.56</td>
<td>0.49</td>
<td>0.35</td>
<td>0.39</td>
<td>0.35</td>
</tr>
<tr>
<td>42</td>
<td>0.47</td>
<td>0.52</td>
<td>0.39</td>
<td>0.36</td>
<td>0.34</td>
</tr>
<tr>
<td>43</td>
<td>0.36</td>
<td>0.30</td>
<td>0.31</td>
<td>0.33</td>
<td>0.31</td>
</tr>
<tr>
<td>44</td>
<td>0.35</td>
<td>0.29</td>
<td>0.30</td>
<td>0.30</td>
<td>0.32</td>
</tr>
<tr>
<td>45</td>
<td>0.34</td>
<td>0.29</td>
<td>0.28</td>
<td>0.29</td>
<td>0.29</td>
</tr>
<tr>
<td>46</td>
<td>0.36</td>
<td>0.30</td>
<td>0.28</td>
<td>0.30</td>
<td>0.29</td>
</tr>
</tbody>
</table>

4. The table below gives part of the options chain for American-style Calls on Bank of America common stock (BAC) as of closing on March 17, 2022, when the spot price was $43.03:

<table>
<thead>
<tr>
<th>Strike</th>
<th>T=</th>
<th>1 d</th>
<th>8 d</th>
<th>15 d</th>
<th>21 d</th>
<th>27 d</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.00</td>
<td>1.10</td>
<td>1.44</td>
<td>1.76</td>
<td>1.96</td>
<td>2.18</td>
<td></td>
</tr>
<tr>
<td>43.00</td>
<td>0.34</td>
<td>0.86</td>
<td>1.10</td>
<td>1.33</td>
<td>1.58</td>
<td></td>
</tr>
<tr>
<td>44.00</td>
<td>0.06</td>
<td>0.44</td>
<td>0.69</td>
<td>0.88</td>
<td>1.06</td>
<td></td>
</tr>
<tr>
<td>45.00</td>
<td>0.02</td>
<td>0.18</td>
<td>0.35</td>
<td>0.53</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>46.00</td>
<td>0.01</td>
<td>0.07</td>
<td>0.16</td>
<td>0.31</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>47.00</td>
<td>0.01</td>
<td>0.02</td>
<td>0.09</td>
<td>0.17</td>
<td>0.27</td>
<td></td>
</tr>
</tbody>
</table>

Also, the US T-bill rates for various maturities were

<table>
<thead>
<tr>
<th>Date</th>
<th>4 wk</th>
<th>8 wk</th>
<th>13 wk</th>
<th>26 wk</th>
<th>52 wk</th>
</tr>
</thead>
<tbody>
<tr>
<td>03/14/2022</td>
<td>0.22</td>
<td>0.30</td>
<td>0.45</td>
<td>0.84</td>
<td>1.20</td>
</tr>
<tr>
<td>03/15/2022</td>
<td>0.21</td>
<td>0.29</td>
<td>0.46</td>
<td>0.84</td>
<td>1.19</td>
</tr>
<tr>
<td>03/16/2022</td>
<td>0.23</td>
<td>0.28</td>
<td>0.43</td>
<td>0.84</td>
<td>1.26</td>
</tr>
<tr>
<td>03/17/2022</td>
<td>0.20</td>
<td>0.30</td>
<td>0.40</td>
<td>0.79</td>
<td>1.20</td>
</tr>
</tbody>
</table>

Use this data to compute and plot the volatility surface for BAC.

Solution: Use the commands that produced Figure 7.1, but with the data for this problem. Set the riskless rate for all calculations to be the 4-week rate averaged over the 4 days sampled, which is 0.215% APR.

```
Ks=42:47; Ts=[1,8,15,21,27]; % strikes and days to expiry
C=[1.10 1.44 1.76 1.96 2.18 ;... % Call premiums on 2022-03-17
0.34 0.86 1.10 1.33 1.58 ;...%
0.06 0.44 0.69 0.88 1.06 ;...%
0.02 0.18 0.35 0.53 0.71 ;...%
0.01 0.07 0.16 0.31 0.44 ;...%
0.01 0.02 0.09 0.17 0.27 ]; % Call premiums on 2022-03-17
```

3
S0=43.03; r=0.215; % spot price and riskless APR
Vimp=zeros(length(Ks),length(Ts)); % implied volatilities
minv=0.01; maxv=0.99; tol=0.00001; % bisection parameters
for col=1:length(Ts)
 T=Ts(col)/365; % time to expiry in years
 for row=1:length(Ks)
 f=@(v) BS(T,S0,Ks(row),r/100,v); % Black-Scholes Call
 Vimp(row,col)=bisection(f,C(row,col),minv,maxv,tol);
 end
end
mesh(Ts,Ks,Vimp); % note the transposed order (T,K,V(K,T))
title("Implied Volatility Surface");
xlabel("T (days)"); ylabel("K");

Figure 1: Graph from Exercise 4.

The results may be seen in Figure 1.

5. Suppose that a share of XYZ has a spot price of $47.12, that riskless interest rates for the next month are expected to be a constant 0.66% APR, and that the premiums for European-style Call options expiring in 4 weeks ($T = 4/52$) are as follows:

<table>
<thead>
<tr>
<th>Strike price</th>
<th>45.00</th>
<th>46.00</th>
<th>47.00</th>
<th>48.00</th>
<th>49.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call premium</td>
<td>3.52</td>
<td>2.78</td>
<td>2.10</td>
<td>1.44</td>
<td>1.37</td>
</tr>
</tbody>
</table>

(a) Construct an implied binomial tree for these inputs using Rubinstein’s 1-2-3 algorithm. Display it along with the implied risk neutral up probabilities.
(b) Plot the three weight functions \(w_1(x) = \sqrt{x}, \ w_2(x) = x^2, \) and \(w_3(x) = \frac{1 - \cos(\pi x)}{2} \), for \(0 \leq x \leq 1 \), on the same graph.

(c) Apply Rubinstein’s 1-2-3 algorithm with Jackwerth’s generalization to the data, using weights \(w_1, w_2, w_3 \) from part (b). Compare \(S, p, \) and \(Q \) for the three weights.

Solution:

(a) Apply Rubinstein’s original 1-2-3 algorithm using IBT123J.m with the following Octave commands:

\[
\begin{align*}
\text{Ks} & = [45, 46, 47, 48, 49]; \\
\text{Cs} & = [3.52, 2.78, 2.10, 1.44, 1.37]; \\
\text{S0} & = 47.12; \ x = 0.66/100; \ \rho = \exp(r); \ w = @(x)x; \\
[S, Q, \text{up}, \text{down}, \text{pu}, \text{N1}] & = \text{IBT123J}(\text{S0}, \text{Ks}, \text{Cs}, \rho, w); \ S, \text{pu}
\end{align*}
\]

That produces the following output, edited for space savings:

\[
\begin{align*}
S & = \% \text{ implied binomial tree} \quad \text{pu} = \% \text{ risk neutral up probs.} \\
47.12 & \\
43.48 & 50.36 \quad 0.3710 \quad 0.6853 \\
41.14 & 47.63 \quad 51.73 \quad 0.0639 \quad 0.8916 \quad 0.5905 \\
40.88 & 46.11 \quad 47.90 \quad 54.53 \quad 0.0559 \quad 0.1818 \quad 0.9779 \quad 0.3218 \\
40.64 & 46.00 \quad 47.00 \quad 48.00 \quad 68.57
\end{align*}
\]

(b) The three weight functions all differ from \(w(x) = x \): \(w_1(x) = \sqrt{x} \) is concave, \(w_2(x) = x^2 \) is convex, and \(w_3(x) = \frac{1 - \cos(\pi x)}{2} \) has a unique inflection point. They may be plotted as in Figure 2 using the following Octave/MATLAB commands:

\[
\begin{align*}
w1 & = @(x)\sqrt{x}; \ w2 = @(x)x.^2; \ w3 = @(x)(1-\cos(\pi x))/2; \\
t & = 0:0.01:1; \ \text{plot}(t, w1(t), "r--", t, w2(t), "b..", t, w3(t), "k-"); \\
\text{legend}("w1", "w2", "w3", "location", "southeast"); \\
\text{title}("Weight Functions for Jackwerth's Generalization")
\end{align*}
\]

(c) Run three experiments as follows, reusing previously assigned variables from parts (a) and (b):

\[
\begin{align*}
[S1, Q1, \text{up}, \text{down}, \text{pu1}, \text{N1}] & = \text{IBT123J}(\text{S0}, \text{Ks}, \text{Cs}, \rho, w1); \ S1, Q1, \text{pu1} \\
[S2, Q2, \text{up}, \text{down}, \text{pu2}, \text{N1}] & = \text{IBT123J}(\text{S0}, \text{Ks}, \text{Cs}, \rho, w2); \ S2, Q2, \text{pu2} \\
[S3, Q3, \text{up}, \text{down}, \text{pu3}, \text{N1}] & = \text{IBT123J}(\text{S0}, \text{Ks}, \text{Cs}, \rho, w3); \ S3, Q3, \text{pu3}
\end{align*}
\]

The results, side-by-side, are:

\[
\begin{align*}
\text{S1} & = \quad \text{S2} = \quad \text{S3} = \\
47.12 & \\
44.57 & 51.57 \quad 41.74 \quad 49.74 \quad 43.82 \quad 50.53 \\
41.50 & 47.76 \quad 53.72 \quad 40.73 \quad 47.31 \quad 50.58 \quad 40.98 \quad 47.63 \quad 52.87 \\
41.14 & 46.24 \quad 47.91 \quad 57.57 \quad 40.65 \quad 46.01 \quad 47.88 \quad 52.30 \quad 40.76 \quad 46.09 \quad 47.90 \quad 57.11 \\
\% \ \text{each last S row is 40.64, 46.00, 47.00, 48.00, 68.57} \\
Q1 & = \quad Q2 = \quad Q3 = \\
1 & 1 & 1
\end{align*}
\]
Weight Functions for Jackwerth’s Generalization

Figure 2: Weight functions for Jackwerth’s generalization in Rubinstein’s 1-2-3 algorithm: $w_1(x) = \sqrt{x}$, $w_2(x) = x^2$, and $w_3(x) = (1 - \cos(\pi x))/2$.

$$
\begin{array}{ccc}
.6246 & .3754 & \cdot .3182 & .6818 & .4963 & .5037 \\
.3110 & .4436 & .2455 & .2657 & .2100 & .5243 & .2793 & .4340 & .2867 \\
.2853 & .0444 & .5202 & .1500 & .2589 & .0617 & .3492 & .3303 & .2639 & .0616 & .5170 & .1574 \\
\% \text{...each last Q row is } & 0.2551 & 0.0604 & 0.0201 & 0.5939 & 0.0705 \\
\text{pu1} = & \text{pu2} = & \text{pu3} = \\
.3754 & .6818 & .5037 \\
.6021 & .6539 & .1650 & .7690 & .4372 & .5692 \\
.0825 & .9577 & .6111 & .0258 & .7390 & .6300 & .0551 & .8935 & .5492 \\
\end{array}
$$

Note that there is one less row for the up probabilities.

6. Prove that any subspace $V \subset \mathbb{R}^n$ is a closed convex cone.

Solution: Check the needed properties:

Cone: $v \in V \implies \lambda v \in V$ for any $\lambda > 0$, since any multiple of a vector is still in the subspace.

Convex: For any $x, y \in V$ and any $\lambda \in [0,1]$, both $\lambda x \in V$ and $(1 - \lambda)y \in V$ just as above. Then $\lambda x + (1 - \lambda)y \in V$ because sums of vectors in V remain in V.

6
7. Prove that the closed orthant \(K \subset \mathbb{R}^n \) of vectors with nonnegative coordinates is a closed convex cone.

Solution: Check the needed properties:

- **Cone:** For any \(k = (k_1, \ldots, k_n) \in K \iff (\forall i) k_i \geq 0 \), so for any \(\lambda > 0 \), \(\lambda k = (\lambda k_1, \ldots, \lambda k_n) \in K \) because \((\forall i) \lambda k_i \geq 0\).

- **Convex:** For any \(x, y \in K \) and any \(\lambda \in [0,1] \), the coordinates of \(\lambda x + (1-\lambda)y \) will be
 \[
 \lambda x_i + (1-\lambda)y_i \geq 0, \quad i = 1, \ldots, n,
 \]
 since \(x_i, y_i, \lambda \), and \(1-\lambda \) are all nonnegative. Hence \(\lambda x + (1-\lambda)y \in K \).

- **Closed:** It suffices to prove that the complement of \(K \) is open. But \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \setminus K \iff (\exists i) x_i < 0 \). Suppose without loss of generality that \(x_1 < 0 \). Let \(\epsilon = |x_1|/2 \). Then for every \(y = (y_1, \ldots, y_n) \in B_r(x) \), it must be that \(|y_1 - x_1| < \epsilon = |x_1|/2 \), so \(y_1 < 0 \) as well. Conclude that \(B_r(x) \subset \mathbb{R}^n \setminus K \), so \(\mathbb{R}^n \setminus K \) is an open set, so \(K \) is closed. \(\square \)

8. Prove that the pointless orthant \(K \setminus 0 \) is a convex cone but is neither open nor closed.

Solution: Check the needed properties:

- **Cone:** \(k = (k_1, \ldots, k_n) \) belongs to \(K \setminus 0 \) if and only if all coordinates \(k_i \) are nonnegative and at least one of them is positive. This property is preserved by multiplication by \(\lambda > 0 \).

- **Convex:** For any \(x, y \in K \setminus 0 \) and any \(\lambda \in [0,1] \), the coordinates of \(\lambda x + (1-\lambda)y \) will be
 \[
 \lambda x_i + (1-\lambda)y_i \geq 0, \quad i = 1, \ldots, n,
 \]
 since \(x_i, y_i, \lambda \), and \(1-\lambda \) are all nonnegative. Hence \(\lambda x + (1-\lambda)y \in K \). It remains to show that some coordinate is positive, which can be done by checking two cases for \(\lambda \in [0,1] \). By hypothesis, there is some \(i \) such that \(x_i > 0 \) and some \(j \) such \(y_j > 0 \).

 - If \(\lambda > 0 \), then \(\lambda x_i + (1-\lambda)y_i > 0 \).
 - Else \(\lambda = 0 \), so \(1-\lambda = 1 > 0 \), so \(\lambda x_j + (1-\lambda)y_j = y_j > 0 \).

Conclude that \(\lambda x + (1-\lambda)y \in K \setminus 0 \).

Not open: Every open ball centered at the point \((1,0,\ldots,0) \in K \setminus 0 \) contains points with some negative coordinates which are therefore not in \(K \setminus 0 \). Hence \(K \setminus 0 \) is not open.
Not closed: Every open ball \(B_r(0) \) centered at the point 0 in the complement of \(K \setminus 0 \) contains points with all positive coordinates which are therefore in \(K \setminus 0 \). Hence the complement of \(K \setminus 0 \) is not open. Hence \(K \setminus 0 \) is not closed.

9. Prove that \(K^o \) is an open convex cone.

Solution: Check the needed properties:

Cone: \(k = (k_1, \ldots, k_n) \) belongs to \(K^o \) if and only if all coordinates \(k_i \) are positive. This property is preserved by multiplication by \(\lambda > 0 \).

Convex: For any \(x, y \in K^o \) and any \(\lambda \in [0, 1] \), the coordinates of \(\lambda x + (1 - \lambda)y \) will be

\[
\lambda x_i + (1 - \lambda)y_i > 0, \quad i = 1, \ldots, n,
\]

since at least one of \(\lambda x_i \) or \((1 - \lambda)y_i \) must be positive for every \(i \). Hence \(\lambda x + (1 - \lambda)y \in K^o \).

Open: Choose any \(x = (x_1, \ldots, x_n) \in K^o \). Let

\[
\epsilon = \min\{x_i/2 : i = 1, \ldots, n\}.
\]

Then \(\epsilon > 0 \) since \(x_i > 0 \) for every \(i \). But then every point \(y \in B_r(x) \) has coordinates satisfying

\[
|y_i - x_i| < \epsilon, \quad \implies \quad y_i > x_i - \epsilon > 0.
\]

Thus \(y \in K^o \), so \(B_r(x) \subset K^o \), so \(K^o \) is open.

10. Prove that the intersection of any collection of convex sets is convex.

Solution: Suppose that \(\{C_\alpha : \alpha \in I\} \) is an arbitrary collection of convex sets. Let \(S = \bigcap_{\alpha \in I} \) be the intersection of all of them.

If \(S = \emptyset \), then \(S \) is convex as there is nothing to check.

Otherwise, suppose \(x, y \in S \), fix \(t \in [0, 1] \), and let \(z = tx + (1 - t)x \). For every \(\alpha \in I \), \(x, y \in C_\alpha \) implies \(z \in C_\alpha \), since \(C_\alpha \) is convex. But then \(z \in S = \bigcap_\alpha C_\alpha \). Conclude that \(S \) is convex.

11. Prove Theorem 8.16 on p.209:

(a) \(K' = K \), that is, the nonnegative orthant is a self-dual cone.

(b) \((K^o)^* = K \) and \((K^o)* = K \setminus 0 \).

(c) \((K \setminus 0)^* = K \) and \((K \setminus 0)* = K^o \).

(d) \(((K^o)*)^* = K^o \), that is, the open positive orthant is its own strict double dual cone.
Solution: (a) Choose any $\mathbf{x} = (x_1, \ldots, x_n) \in K$. Take $\mathbf{k} = (1, 0, \ldots, 0) \in K$ to compute $x_1 = \mathbf{x}^T \mathbf{k} \geq 0$. Corresponding arguments show that $x_i \geq 0$ for every $i = 1, 2, \ldots, n$. Thus $K' \subseteq K$.

Conversely, if $\mathbf{x} \in K$, then for every $\mathbf{k} \in K$ compute

$$x^T \mathbf{k} = x_1 k_1 + \cdots + x_n k_n \geq 0,$$

since all terms are nonnegative. Thus $K \subseteq K'$. Conclude that $K = K'$.

(b) To find the dual, suppose $\mathbf{x} = (x_1, \ldots, x_n) \in (K^o)'$. Take $\mathbf{k} = (1, \epsilon, \ldots, \epsilon) \in K^o$ to compute $x_1 + \epsilon(x_2 + \cdots x_n) = \mathbf{x}^T \mathbf{k} \geq 0$. If $x_1 < 0$, then for sufficiently small $\epsilon > 0$ this inequality will be violated. Thus it must be that $x_1 \geq 0$. Corresponding arguments show that $x_i \geq 0$ for every $i = 1, 2, \ldots, n$. Thus $(K^o)' \subseteq K$.

Conversely, if $\mathbf{x} \in K$, then for every $\mathbf{k} \in K^o$ compute

$$x^T \mathbf{k} = x_1 k_1 + \cdots + x_n k_n \geq 0,$$

since all factors and summands are nonnegative. Thus $K \subseteq (K^o)'$. Conclude that $K = (K^o)'$.

To find the strict dual, suppose $\mathbf{x} = (x_1, \ldots, x_n) \in (K^o)^*$. Take $\mathbf{k} = (1, \epsilon, \ldots, \epsilon) \in K^o$ to compute $x_1 + \epsilon(x_2 + \cdots x_n) = \mathbf{x}^T \mathbf{k} > 0$. If $x_1 < 0$, then, as before, for sufficiently small $\epsilon > 0$ this inequality will be violated. Thus $x_1 \geq 0$. Corresponding arguments show that $x_i \geq 0$ for every $i = 1, 2, \ldots, n$. But also, if $\mathbf{x} = 0$, then $\mathbf{x}^T \mathbf{k} = 0$ so the inequality will be violated. Thus $(K^o)^* \subseteq K \setminus 0$.

Conversely, if $\mathbf{x} \in K \setminus 0$, then for every $\mathbf{k} \in K^o$ compute

$$x^T \mathbf{k} = x_1 k_1 + \cdots + x_n k_n > 0,$$

since all factors and summands are nonnegative and at least one of them must be positive. Thus $K \setminus 0 \subseteq (K^o)^*$. Conclude that $K \setminus 0 = (K^o)^*$.

Remark. Parts (a) and (b) show that $A' = B'$ does not imply $A = B$.

(c) First, to find the dual, suppose $\mathbf{x} = (x_1, \ldots, x_n) \in (K \setminus 0)'$. Take $\mathbf{k} = (1, 0, \ldots, 0) \in K \setminus 0$ to compute $x_1 = \mathbf{x}^T \mathbf{k} \geq 0$. Corresponding arguments show that $x_i \geq 0$ for every $i = 1, 2, \ldots, n$. Thus $(K \setminus 0)' \subseteq K$.

Conversely, if $\mathbf{x} \in K$, then for every $\mathbf{k} \in K \setminus 0$ compute

$$x^T \mathbf{k} = x_1 k_1 + \cdots + x_n k_n \geq 0,$$

since all factors and summands are nonnegative. Thus $K \subseteq (K \setminus 0)'$. Conclude that $K = (K \setminus 0)'$.

Second, to find the strict dual, suppose $\mathbf{x} = (x_1, \ldots, x_n) \in (K \setminus 0)^*$. Take $\mathbf{k} = (1, 0, \ldots, 0) \in K \setminus 0$ to compute $x_1 = \mathbf{x}^T \mathbf{k} > 0$. Similarly, compute $x_i > 0$ for every $i = 1, 2, \ldots, n$. Thus $(K \setminus 0)^* \subseteq K^o$.
Conversely, if \(x \in K^o \), then for every \(k \in (K \setminus 0)^* \) compute
\[
x^T k = x_1 k_1 + \cdots + x_n k_n > 0,
\]
since all factors and summands are nonnegative and at least one of them must be positive. Thus \(K \setminus 0 \subset (K^o)^* \). Conclude that \(K \setminus 0 = (K^o)^* \).

(d) Observe that if \(x \in K^o \), then \(x^T k > 0 \) for every \(k \in (K^o)^* \). Thus \(K^o \subset ((K^o)^*)^* \).

Conversely, if \(x \in ((K^o)^*)^* \), then choosing \(k = (1, 0, \ldots, 0) \in K \setminus 0 = (K^o)^* \), as shown in part (b), gives \(x_1 = x^T k > 0 \). Similarly, \(x_i > 0 \) for all \(i = 1, 2, \ldots, n \). Thus \(x \in K^o \), and since \(x \) was arbitrary, \(((K^o)^*)^* \subset K^o \). Conclude that \(((K^o)^*)^* = K^o \).

12. Prove Eq.8.6:
\[
AK = \sum_{i=1}^{n} \bar{V}_i; \quad AK^o = \sum_{i=1}^{n} V_i,
\]
where \(A \in \mathbb{R}^{m \times n} \), and \(K, K^o \) are the orthants of Definition 6.

Solution: Recall that \(v_i \in \mathbb{R}^m \) is the \(i \)th column of \(A \), defining the rays \(\bar{V}_i = \{cv_i : c > 0\} \) and \(V_i = \{cv_i : c \geq 0\} \) for \(i = 1, \ldots, n \). Then \(x \in AK \) iff there exists \(k = (k_1, \ldots, k_n) \in K \) such that \(x = A k \). But then,
\[
x = A k = \sum_{i=1}^{n} k_i v_i \in \sum_{i=1}^{n} \bar{V}_i,
\]
since \(k_i v_i \in \bar{V}_i \) because \(k_i \geq 0 \) for all \(i \).
Likewise, \(x \in AK^o \) iff there exists \(k^o = (k_1^o, \ldots, k_n^o) \in K^o \) such that \(x = A k^o \). But then
\[
x = A k^o = \sum_{i=1}^{n} k_i^o v_i \in \sum_{i=1}^{n} V_i,
\]
since \(k_i^o v_i \in V_i \) because \(k_i^o > 0 \) for all \(i \).

13. Prove Corollary 8.18 on p.209: The set \(S \) of strictly profitable portfolios is a strict dual cone: \(S = (AK^o)^* \)

Solution: Modify the proof of Corollary 8.17 as follows:

Proof: Since \((K \setminus 0)^* = K^o \) by Theorem 8.16(c),
\[
s \in S \iff s^T A \in K \setminus 0
\]
\[
\iff (\forall k \in (K \setminus 0)^*)(s^T A)k > 0
\]
\[
\iff (\forall k \in K^o)(s^T A)k > 0
\]
\[
\iff (\forall k \in K^o)s^T (Ak) > 0
\]
\[
\iff (\forall v \in AK^o)s^T v > 0
\]
\[
\iff s \in (AK^o)^*.
\]
since $AK^\circ = \{Ak : k \in K^\circ\}$, so that the next to last condition is just the definition of membership in the strict dual cone $(AK^\circ)^*$.

14. Suppose $S \subset \mathbb{R}^n$ is any set. Prove the following:

(a) S^\perp is a subspace.
(b) $S^* \subset S'$ and thus $S^* \cap S' = S^*$.
(c) $S^\perp \subset S'$ and thus $S^\perp \cap S' = S^\perp$.
(d) $S^\perp \cap S^* = \emptyset$.
(e) S^\perp, S', and S^* are all convex cones.
(f) If $0 \in S$, then $S^* = \emptyset$. Thus if S is a subspace, then $S^* = \emptyset$.

Solution: (a) Check the definition:
- $0 \in S^\perp$ since $0^T s = 0$ for any $s \in S$.
- Given $x, y \in S^\perp$, take any $s \in S$ and compute
 $$s^T(x + y) = s^T x + s^T y = 0 + 0 = 0.$$
 Conclude that $x + y \in S^\perp$.
- Given $x \in S^\perp$ and $c \in \mathbb{R}$, take any $s \in S$ and compute
 $$s^T(cx) = cs^T x = c0 = 0.$$
 Conclude that $cx \in S^\perp$.

(b) $v^T s > 0 \implies v^T s \geq 0$, so every $v \in S^*$ also belongs to S'.
(c) $v^T s = 0 \implies v^T s \geq 0$, so every $v \in S^\perp$ also belongs to S'.
(d) It is impossible to have both $v^T s = 0$ and $v^T s > 0$, so there are no vectors v in both S^* and S^\perp.

(e) Check the two needed properties for S^\perp, S', and S^*:

Cones: Let x be a vector in \mathbb{R}^n and let λ be a positive real number.
- $(\forall s \in S)s^T x = 0 \implies (\forall s \in S)s^T (\lambda x) = \lambda 0 = 0$;
- $(\forall s \in S)s^T x \geq 0 \implies (\forall s \in S)s^T (\lambda x) = \lambda s^T x \geq 0$;
- $(\forall s \in S)s^T x > 0 \implies (\forall s \in S)s^T (\lambda x) = \lambda s^T x > 0$.

Convex: Let x, y be vectors in \mathbb{R}^n and let $\lambda \in [0, 1]$ be a real number. Let $s \in S$ be arbitrary.
- $s^T[\lambda x + (1 - \lambda)y] = \lambda s^T x + (1 - \lambda)s^T y = 0$ if $x, y \in S^\perp$;
- $s^T[\lambda x + (1 - \lambda)y] = \lambda s^T x + (1 - \lambda)s^T y \geq 0$ if $x, y \in S'$;
- $s^T[\lambda x + (1 - \lambda)y] = \lambda s^T x + (1 - \lambda)s^T y > 0$ if $x, y \in S^*$.
(f) If $0 \in S$, then every $x \in \mathbb{R}^n$ gives $x^T 0 = 0$, so there is no $x \in \mathbb{R}^n$ such that $x^T 0 > 0$, so $S^* = \emptyset$. \hfill \Box

15. Suppose that $n > 2$ and market model A, q has

$$A = \begin{pmatrix} R & \cdots & R \\ a_1 & \cdots & a_n \end{pmatrix},$$

where $R > 1$ is the riskless return and $a = (a_1, \ldots, a_n)$ is a nonconstant payoff vector for the sole risky asset.

(a) Find necessary and sufficient conditions on q such that A, q is arbitrage-free. (Hint: use the Fundamental Theorem.)

(b) Exhibit a derivative payoff d for which no exact hedge exists. (This shows that A is not a complete market.)

(c) Exhibit a derivative d for which an exact hedge does exist.

Solution: (a) Following the hint, observe that A, q is arbitrage-free if and only if there exists a positive vector $k = [k_1, \ldots, k_n]^T$ such that $q = Ak$. But $q = [1, S_0]^T$, so Rk is a p.d.f., so if $q = Ak$, then

$$S_0 = q(2) = Ak(2) = \sum_{i=1}^n a_i k_i = \frac{1}{R} \sum_{i=1}^n a_i (R k_i),$$

which is possible if and only if $\min\{a_i\} < RS_0 < \max\{a_i\}$. \hfill \Box

Remark. Thus RS_0 must be inside the range of the payoffs $\{a_i\}$.

(b) It may be assumed that $a_1 < a_2 \leq a_3$. (Otherwise, simply renumber the states.) Submatrix

$$A_2 = \begin{pmatrix} R & R \\ a_1 & a_2 \end{pmatrix}$$

is invertible, so the numbers h_0, h_1 are uniquely determined by

$$\begin{pmatrix} h_0 \\ h_1 \end{pmatrix} = A_2^{-1} \begin{pmatrix} d_1 \\ d_2 \end{pmatrix},$$

where $d = [d_1, d_2, d_3, \ldots]^T$ is the payoff vector for the derivative to be hedged. Now choose $d_1 = d_2 = 1$, determine h_0, h_1, and choose d_3 different from $h_0 R + h_1 a_3$. The derivative with this payoff cannot be exactly hedged in this market.

(c) As in part (b), choose $d_1 = d_2 = 1$, determine h_0, h_1, but choose

$$d_i = h_0 R + h_1 a_i, \quad i = 3, \ldots, n.$$

The row vector $d = [1, d_3, \ldots, d_n]$ lies in the row space of A and thus is exactly hedged by $h = [h_0, h_1]$. \hfill \Box

12
16. Suppose that a market model has five states, a riskless asset returning $R = 1.02$, and two risky assets a, b with spot prices $a_0 = 20$ and $b_0 = 12$ and payoffs $a = (10, 15, 20, 25, 30)$ and $b = (17, 15, 12, 10, 7)$, respectively.

(a) Prove that the model is arbitrage-free.

(b) Find the no-arbitrage bid-ask interval for a European-style Call option on a with strike price 20.

(c) Find the no-arbitrage bid-ask interval for a European-style Put option on b with strike price 13.

Solution: The computations may be done in Octave with the `glpk` package. Begin by putting the data into a finite market model Aq:

\[
a = [10, 15, 20, 25, 30]; \quad b = [17, 15, 12, 10, 7]; \quad a_0 = 20; \quad b_0 = 12; \\
R = 1.02; \quad A = [R R R R R; a; b]; \quad q = [1; a_0; b_0]; \quad Aq
\]

(This is in the notation of Definition 4.)

(a) To show that A, q is arbitrage-free, by Fundamental Theorem 8.4 it suffices to find $k > 0$ such that $q = Ak$. This 3×5 linear system may be placed into row echelon form, yielding

\[
\text{rref}([A R*q])
\]

```
% 1.00000 0.00000 0.00000 -1.00000 -1.00000 -0.48000
% 0.00000 1.00000 0.00000 1.00000 -0.00000 0.88000
% 0.00000 0.00000 1.00000 1.00000 2.00000 0.60000
```

(Use $R*q$ in the augmented matrix to get the risk neutral probabilities $p = Rk$, which sum to 1, instead of the discounted vector k which will sum to $\frac{1}{R}$.) The complete set of three pivot rows shows that the system is consistent but underdetermined and thus has a two-parameter family of solutions. By Corollary 8.8, it suffices to check that the unique minimal norm solution is positive. Octave computes it with

\[
A\backslash q*R \quad % p = 0.024 0.432 0.040 0.448 0.056 \\
A\backslash q \quad % k = 0.023529 0.423529 0.039216 0.439216 0.054902
\]

Conclude that A, q is arbitrage-free.

Remark. The row echelon form of $[A R*q]$ shows how to find the complete solution set of positive vectors $Rk \overset{\text{def}}{=} p = (p_1, p_2, p_3, p_4, p_5)$. Identify the pivot variables p_1, p_2, p_3, so p_4 and p_5 are free variables. The general solution may be expressed as

\[
p_1 = p_4 + p_5 - 0.48 \\
p_2 = -p_4 + 0.88 \\
p_3 = -p_4 - 2p_5 + 0.60
\]
According to the given information,
\[\sum_i p_i = 1 \]
to find a positive solution \(p > 0 \) requires solving the simultaneous inequalities:

\[p_4 > 0, \; p_5 > 0, \; p_4 + p_5 > 0.48, \; p_4 < 0.88, \; p_4 + 2p_5 < 0.60, \]

which reduce to the intervals \(0 < p_5 < 0.12 \) and \(0.48 - p_5 < p_4 < 0.60 - 2p_5 \). One of the infinitely many solutions is thus parametrized by the midpoints:

\[
\begin{align*}
p_4 &= \frac{(0.48-p_5)+(0.60-2p_5)}{2}; \\
p_5 &= \frac{p_4+p_5-0.48; \; p_2 = -p4+0.88; \; p_3 = -p4-2p5+0.60; }{2}; \\
p &= [p_1 \; p_2 \; p_3 \; p_4 \; p_5]; \; p = 0.03 \; 0.43 \; 0.03 \; 0.45 \; 0.06; \\
k &= \frac{p}{R}; \; k = 0.029412 \; 0.421569 \; 0.029412 \; 0.441176 \; 0.058824.
\end{align*}
\]

This gives another explicit positive solution \(k > 0 \), proving that \(A, q \) is arbitrage-free without using Corollary 8.8.

For parts (b) and (c), reuse the Octave code from Section 8.2.3, first putting the parameters, market matrix and spot prices into GLPK format:

```
sellctype="LLLLL"; \% Lower constraint type \( A'*x(j) >= bb(j), j=1:5 \) 
sellsense=1; \% Optimization direction for \( q'*x \): \"1\" \Rightarrow \"min\" 
buyctype="UUUUU"; \% Upper constraint type \( A'*x(j) =< bb(j), j=1:5 \) 
buysense=-1; \% Optimization direction for \( q'*x \): \"-1\" \Rightarrow \"max\" 
vartype="CCC"; \% \( x(j) \) is Continuous, \( j=1:3 \) 
param.msglev=1; \% \Rightarrow use a low verbosity level 
huge=1000; \% huge and huger 
param.itlim=huge; \% \Rightarrow huge maximum number of iterations 
lb=[-infty; -huge; -huge]; \% huge Lower bounds on \( x \) 
ub=[ infty; huge; huge]; \% huge Upper bounds on \( x \)
```

(b) Compute the Call payoff on asset \(a \), then find a superreplication and a subreplication, taking the derivative seller’s and buyer’s perspectives, respectively:

\[
\begin{align*}
K_a &= 20; \; ba = \max(a-K_a,0); \% C(T): payoff for "a" Call
[hs,ask]=glpk(q,A',ba,lb,ub,sellctype,vartype,sellsense,param) \% hs = [102.9412; -2.00; -5.00]; Cost-minimizing hedge portfolio
% ask = 2.9412; minimum cost to superreplicate the Call
[hb,bid]=glpk(q,A',ba,lb,ub,buyctype,vartype,buysense,param) \% hb = [-117.6471; 3.00; 5.00]; Cost-maximizing hedge portfolio
% bid = 2.3529; maximum cost to subreplicate the Call
\end{align*}
\]

Since bid is strictly less than ask, by Corollary 8.9 there is no exact hedge for this derivative in this market.

(c) Compute the Put payoff on asset \(b \), then find a superreplication and a subreplication, taking the derivative seller’s and buyer’s perspectives, respectively:

\[
\begin{align*}
K_b &= 20; \; ba = \max(b-K_b,0); \% C(T): payoff for "b" Call
[hs,ask]=glpk(q,A',ba,lb,ub,sellctype,vartype,sellsense,param) \% hs = [102.9412; -2.00; -5.00]; Cost-minimizing hedge portfolio
% ask = 2.9412; minimum cost to superreplicate the Call
[hb,bid]=glpk(q,A',ba,lb,ub,buyctype,vartype,buysense,param) \% hb = [-117.6471; 3.00; 5.00]; Cost-maximizing hedge portfolio
% bid = 2.3529; maximum cost to subreplicate the Call
\end{align*}
\]
Kb=13; bb=max(Kb-b,0); % P(T): payoff for "b" Put
[hs,ask]=glpk(q,A',bb,lb,ub,sellctype,vartype,sellsense,param)
% hs = [61.7647; -1.20; -3.00]; Cost-minimizing hedge portfolio
% ask = 1.7647; minimum cost to superreplicate the Call
[hb,bid]=glpk(q,A',bb,lb,ub,buyctype,vartype,buysense,param)
% hb = [-26.47059; 0.80; 1.00]; Cost-maximizing hedge portfolio
% bid = 1.5294; maximum cost to subreplicate the Call

Since bid is strictly less than ask, by Corollary 8.9 there is no exact hedge for this derivative in this market. □