
Math 5052

Measure Theory and Functional Analysis II

Homework Assignment 7

Prof. Wickerhauser

Due Friday, February 5th, 2016

Please do Exercises 3, 6, 14, 16*, 17, 18, 21*, 23*, 24, 27*.

Exercises marked with (*) are especially important and you may wish to focus extra attention on those.

You are encouraged to try the other problems in this list as well.

Note: “textbook” refers to “Real Analysis for Graduate Students,” version 2.1, by Richard F. Bass. Some

of these exercises originate from that source.

1. Find a measure space (X,A, µ), a subspace Y of L1(X,µ), and a bounded linear functional f on Y

with norm 1 such that f has two distinct extensions to L1(X,µ) and each of the extensions has norm

equal to 1.

2. Show that if 1 ≤ p <∞, then Lp([0, 1]) is separable, namely that there is a countable dense subset.

3. Show that L∞([0, 1]) is not separable, namely that any dense subset must be uncountable.

4. For k ≥ 1 and functions f : [0, 1]→ R that are k times differentiable, define

‖f‖Ck
def
= ‖f‖∞ + ‖f ′‖∞ + · · ·+ ‖f (k)‖∞,

where f (k) is the kth derivative of f . Let Ck([0, 1]) be the collection of k times continuously differen-

tiable functions f with ‖f‖Ck <∞.

Is Ck([0, 1]) complete with respect to the norm ‖ · ‖Ck?

5. Fix α ∈ (0, 1). For a continuous function f : [0, 1]→ R, define

‖f‖Cα
def
= sup

x∈[0,1]
|f(x)|+ sup

x6=y∈[0,1]

|f(x)− f(y)|
|x− y|α

.

Let Cα([0, 1]) be the set of continuous functions f with ‖f‖Cα <∞.

Is Cα([0, 1]) complete with respect to the norm ‖ · ‖Cα?
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6. For positive integers n, let

An
def
=

{
f ∈ L1([0, 1]) :

∫ 1

0

|f(x)|2 dx ≤ n
}
.

Show that each An is a closed subset of L1([0, 1]) with empty interior.

7. Suppose L is a linear functional on a normed linear space X. Prove that L is a bounded linear functional

if and only if the set Z
def
= {x ∈ X : Lx = 0} is closed.

8. Suppose X and Y are Banach spaces and L is the collection of bounded linear maps from X into Y ,

with the usual operator norm:

‖L‖ def
= sup

‖x‖X≤1
‖Lx‖Y .

Define (L+M)x
def
= Lx+Mx and (cL)x = c(Lx) for L,M ∈ L, x ∈ X, and scalar c.

Prove that L is a Banach space.

NOTE: see Remark 18.10 on textbook p.178.

9. Set A in a normed linear space is called convex if

λx+ (1− λ)y ∈ A

whenever x, y ∈ A and λ ∈ [0, 1].

a. Prove that if A is convex, then the closure of A is convex.

b. Prove that the open unit ball in a normed linear space is convex. (The open unit ball is the set

of x such that ‖x‖ < 1.)

10. The unit ball in a normed linear space V is called strictly convex if ‖λf + (1 − λ)g‖ < 1 whenever

‖f‖ = ‖g‖ = 1, f 6= g ∈ V , and λ ∈ (0, 1).

Let (X,A, µ) be a measure space.

a. Prove that, if 1 < p <∞, then the unit ball in Lp(X,µ) is strictly convex.

b. Prove that if X contains two or more points, then the unit balls in L1(X,µ) and L∞(X,µ) are

not strictly convex.

11. Let X be a metric space containing two or more points. Prove that the unit ball in C(X) is not strictly

convex.

12. Let fn be a sequence of continuous functions on R that converge at every point. Prove that for

every compact subset K ⊂ R there exists a number M such that supn |fn| is bounded by M on that

interval.
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13. Suppose ‖ · ‖1 and ‖ · ‖2 are two norms on a vector space X such that ‖x‖1 ≤ ‖x‖2 for all x ∈ X, and

suppose X is complete with respect to both norms. Prove that there exists a positive constant c such

that

‖x‖2 ≤ c‖x‖1

for all x ∈ X.

14. Suppose X and Y are Banach spaces.

a. Let X × Y be the set of ordered pairs (x, y), x ∈ X, y ∈ Y , with componentwise addition and

multiplication by scalars. Define

‖(x, y)‖X×Y
def
= ‖x‖X + ‖y‖Y .

Prove that X × Y is a Banach space.

b. Let L : X → Y be a linear map such that if xn → x in X and Lxn → y in Y , then y = Lx. Such

a map is called a closed map. Let G be the graph of L, defined by

G
def
= {(x, y) ∈ X × Y : y = Lx}.

Prove that G is a closed subset of X × Y , hence is complete.

c. Prove that the function (x, Lx) 7→ x is continuous, injective, linear, and surjective from G onto

X.

d. Prove the closed graph theorem: If L is a closed linear map from one Banach space to another

(and hence by part b has a closed graph), then L is a continuous map.

15. Let X be the space of continuously differentiable functions on [0, 1] with the supremum norm and let

Y = C([0, 1]). Define D : X → Y by Df = f ′. Show that D is a closed map but not a bounded one.

16. Let A be the set of real-valued continuous functions on [0, 1] such that∫ 1/2

0

f(x) dx−
∫ 1

1/2

f(x) dx = 1.

Prove that A is a closed convex subset of C([0, 1]), but there does not exist f ∈ A such that ‖f‖ =

infg∈A ‖g‖.

17. Let An be the subset of the real-valued continuous functions on [0, 1] given by

An
def
= {f : (∃x ∈ [0, 1])(∀y ∈ [0, 1])|f(x)− f(y)| ≤ n|x− y|}.

a. Prove that An is nowhere dense in C([0, 1]).
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b. Prove that there exist functions f ∈ C([0, 1]) which are nowhere differentiable on [0, 1], namely

f ′(x) does not exist at any point x ∈ [0, 1].

18. Let X be a linear space and let E ⊂ X be a convex set with 0 ∈ E. Define a non-negative function

ρ : X → R by

ρ(x)
def
= inf{t > 0 : t−1x ∈ E},

with the convention that ρ(x) = ∞ = inf ∅ if no t > 0 gives t−1x ∈ E. This called the Minkowski

functional defined by E.

a. Show that ρ is a sublinear functional, namely it satisfies ρ(0) = 0, ρ(x + y) ≤ ρ(x) + ρ(y), and

ρ(λx) = λρ(x) for all x, y ∈ X and all λ > 0.

b. Suppose in addition that X is a normed linear space and E is an open convex set containing 0.

Prove that the Minkowski functional defined by E is finite at every x ∈ X and that x ∈ E if and

only if ρ(x) < 1.

19. Let X be a linear space and let ρ : X → R be a sublinear functional that is finite at every point. Prove

that

|ρ(x)− ρ(y)| ≤ max(ρ(y − x), ρ(x− y))

for every x, y ∈ X.

20. Let X be a normed linear space, let E ⊂ X be an open convex set containing 0, and let ρ : X → R be

the Minkowski functional defined by E. (See exercise 18 part a.) Prove that ρ is continuous on X.

21. Let X be a linear space and let ρ : X → R be a sublinear functional. Suppose that M is a subspace

of X and f : M → R is a linear functional dominated by ρ, namely

f(x) ≤ ρ(x), x ∈M.

Prove that there exists a linear functional F : X → R that satisfies F (x) = f(x) for all x ∈ M and

F (x) ≤ ρ(x) for all x ∈ X.

NOTE: this implies the Hahn-Banach theorem, 18.5 on textbook p.173, in the special case ρ(x)
def
= ‖x‖.

22. Let X be a Banach space and suppose x and y are distinct points in X. Prove that there is a bounded

linear functional f on X such that f(x) 6= f(y).

Note: it may thus be said that there are enough bounded linear functionals on X to separate points.

23. Let X be a Banach space, let A ⊂ X be an open convex set, and let B ⊂ X be a convex set disjoint

from A. Prove that there exists a bounded real-valued linear functional f and a constant s ∈ R such

that f(a) < s ≤ f(b) for all a ∈ A and all b ∈ B.
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Hint: Consider the difference set E = A−B + (a0 − b0) for fixed a0 ∈ A, b0 ∈ B, and apply exercises

18, 20, and 21.

24. Let X be a normed linear space. For any convex B ⊂ X, say that a subset F ⊂ B is a face of B if,

given x, y ∈ B and 0 < θ < 1 with θx+ (1− θ)y ∈ F , one may conclude that x, y ∈ F .

a. Suppose f is a bounded linear functional on X and B ⊂ X is a convex subset such that

β
def
= sup{f(x) : x ∈ B} is finite. Define

F
def
= {x ∈ B : f(x) = β}.

Prove that F is a face of B.

b. Suppose B is a convex set, F ⊂ B is a face of B, and G ⊂ F is any subset. Prove that G is a face

of F if and only if G is a face of B.

25. Let X be a linear space. For any convex B ⊂ X, say that e ∈ B is an extreme point of B iff

(∀x, y ∈ B)(∀θ ∈ (0, 1)) e = θx+ (1− θ)y ⇒ e = x = y.

a. Suppose B is an open convex set in a normed linear space X. Prove that B has no extreme points.

b. Suppose B is a compact convex set in a Banach space X. Prove that if B is non-empty then B

contains an extreme point.

(Hint: Apply Zorn’s lemma to the collection of closed non-empty faces of B partially ordered by

F1 ≤ F2 iff F2 is a face of F1. Show that any maximal element contains a single point of B, which

is therefore an extreme point.)

26. Let X be a linear space and A ⊂ X any subset. Define the convex hull of A to be

ch (A)
def
= {θx+ (1− θ)y : x, y ∈ A; 0 ≤ θ ≤ 1}.

If X is a normed linear space, define the closed convex hull of A to be the closure of ch (A), and denote

it by ch (A).

a. Prove that if A ⊂ B ⊂ X, then ch (A) ⊂ ch (B).

b. Prove that if A is a closed convex set, then A = ch (A).

27. Let X be a Banach space and suppose that A ⊂ X is compact and convex. Let E ⊂ A be the set of

extreme points of A as defined in exercise 25. Prove that A = ch (E).

Hint: use exercises 23 and 26.

Note: this is the Krein-Milman theorem.
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