Math 5052
 Measure Theory and Functional Analysis II Homework Assignment 7

Prof. Wickerhauser

Due Friday, February 5th, 2016

Please do Exercises 3, 6, 14, 16*, 17, 18, 21*, 23*, 24, 27^{*}.
Exercises marked with $\left(^{*}\right)$ are especially important and you may wish to focus extra attention on those.
You are encouraged to try the other problems in this list as well.
Note: "textbook" refers to "Real Analysis for Graduate Students," version 2.1, by Richard F. Bass. Some of these exercises originate from that source.

1. Find a measure space (X, \mathcal{A}, μ), a subspace Y of $L^{1}(X, \mu)$, and a bounded linear functional f on Y with norm 1 such that f has two distinct extensions to $L^{1}(X, \mu)$ and each of the extensions has norm equal to 1 .
2. Show that if $1 \leq p<\infty$, then $L^{p}([0,1])$ is separable, namely that there is a countable dense subset.
3. Show that $L^{\infty}([0,1])$ is not separable, namely that any dense subset must be uncountable.
4. For $k \geq 1$ and functions $f:[0,1] \rightarrow \mathbf{R}$ that are k times differentiable, define

$$
\|f\|_{C^{k}} \stackrel{\text { def }}{=}\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}+\cdots+\left\|f^{(k)}\right\|_{\infty}
$$

where $f^{(k)}$ is the k th derivative of f. Let $C^{k}([0,1])$ be the collection of k times continuously differentiable functions f with $\|f\|_{C^{k}}<\infty$.
Is $C^{k}([0,1])$ complete with respect to the norm $\|\cdot\|_{C^{k}}$?
5. Fix $\alpha \in(0,1)$. For a continuous function $f:[0,1] \rightarrow \mathbf{R}$, define

$$
\|f\|_{C^{\alpha}} \stackrel{\text { def }}{=} \sup _{x \in[0,1]}|f(x)|+\sup _{x \neq y \in[0,1]} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}} .
$$

Let $C^{\alpha}([0,1])$ be the set of continuous functions f with $\|f\|_{C^{\alpha}}<\infty$.
Is $C^{\alpha}([0,1])$ complete with respect to the norm $\|\cdot\|_{C^{\alpha}}$?
6. For positive integers n, let

$$
A_{n} \stackrel{\text { def }}{=}\left\{f \in L^{1}([0,1]): \int_{0}^{1}|f(x)|^{2} d x \leq n\right\} .
$$

Show that each A_{n} is a closed subset of $L^{1}([0,1])$ with empty interior.
7. Suppose L is a linear functional on a normed linear space X. Prove that L is a bounded linear functional if and only if the set $Z \stackrel{\text { def }}{=}\{x \in X: L x=0\}$ is closed.
8. Suppose X and Y are Banach spaces and \mathcal{L} is the collection of bounded linear maps from X into Y, with the usual operator norm:

$$
\|L\| \stackrel{\text { def }}{=} \sup _{\|x\|_{X} \leq 1}\|L x\|_{Y}
$$

Define $(L+M) x \stackrel{\text { def }}{=} L x+M x$ and $(c L) x=c(L x)$ for $L, M \in \mathcal{L}, x \in X$, and scalar c.
Prove that \mathcal{L} is a Banach space.
NOTE: see Remark 18.10 on textbook p.178.
9. Set A in a normed linear space is called convex if

$$
\lambda x+(1-\lambda) y \in A
$$

whenever $x, y \in A$ and $\lambda \in[0,1]$.
a. Prove that if A is convex, then the closure of A is convex.
b. Prove that the open unit ball in a normed linear space is convex. (The open unit ball is the set of x such that $\|x\|<1$.)
10. The unit ball in a normed linear space V is called strictly convex if $\|\lambda f+(1-\lambda) g\|<1$ whenever $\|f\|=\|g\|=1, f \neq g \in V$, and $\lambda \in(0,1)$.
Let (X, \mathcal{A}, μ) be a measure space.
a. Prove that, if $1<p<\infty$, then the unit ball in $L^{p}(X, \mu)$ is strictly convex.
b. Prove that if X contains two or more points, then the unit balls in $L^{1}(X, \mu)$ and $L^{\infty}(X, \mu)$ are not strictly convex.
11. Let X be a metric space containing two or more points. Prove that the unit ball in $\mathcal{C}(X)$ is not strictly convex.
12. Let f_{n} be a sequence of continuous functions on \mathbf{R} that converge at every point. Prove that for every compact subset $K \subset \mathbf{R}$ there exists a number M such that $\sup _{n}\left|f_{n}\right|$ is bounded by M on that interval.
13. Suppose $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ are two norms on a vector space X such that $\|x\|_{1} \leq\|x\|_{2}$ for all $x \in X$, and suppose X is complete with respect to both norms. Prove that there exists a positive constant c such that

$$
\|x\|_{2} \leq c\|x\|_{1}
$$

for all $x \in X$.
14. Suppose X and Y are Banach spaces.
a. Let $X \times Y$ be the set of ordered pairs $(x, y), x \in X, y \in Y$, with componentwise addition and multiplication by scalars. Define

$$
\|(x, y)\|_{X \times Y} \stackrel{\text { def }}{=}\|x\|_{X}+\|y\|_{Y}
$$

Prove that $X \times Y$ is a Banach space.
b. Let $L: X \rightarrow Y$ be a linear map such that if $x_{n} \rightarrow x$ in X and $L x_{n} \rightarrow y$ in Y, then $y=L x$. Such a map is called a closed map. Let G be the graph of L, defined by

$$
G \stackrel{\text { def }}{=}\{(x, y) \in X \times Y: y=L x\} .
$$

Prove that G is a closed subset of $X \times Y$, hence is complete.
c. Prove that the function $(x, L x) \mapsto x$ is continuous, injective, linear, and surjective from G onto X.
d. Prove the closed graph theorem: If L is a closed linear map from one Banach space to another (and hence by part b has a closed graph), then L is a continuous map.
15. Let X be the space of continuously differentiable functions on $[0,1]$ with the supremum norm and let $Y=C([0,1])$. Define $D: X \rightarrow Y$ by $D f=f^{\prime}$. Show that D is a closed map but not a bounded one.
16. Let A be the set of real-valued continuous functions on $[0,1]$ such that

$$
\int_{0}^{1 / 2} f(x) d x-\int_{1 / 2}^{1} f(x) d x=1
$$

Prove that A is a closed convex subset of $C([0,1])$, but there does not exist $f \in A$ such that $\|f\|=$ $\inf _{g \in A}\|g\|$.
17. Let A_{n} be the subset of the real-valued continuous functions on $[0,1]$ given by

$$
A_{n} \stackrel{\text { def }}{=}\{f:(\exists x \in[0,1])(\forall y \in[0,1])|f(x)-f(y)| \leq n|x-y|\}
$$

a. Prove that A_{n} is nowhere dense in $C([0,1])$.
b. Prove that there exist functions $f \in C([0,1])$ which are nowhere differentiable on $[0,1]$, namely $f^{\prime}(x)$ does not exist at any point $x \in[0,1]$.
18. Let X be a linear space and let $E \subset X$ be a convex set with $0 \in E$. Define a non-negative function $\rho: X \rightarrow \mathbf{R}$ by

$$
\rho(x) \stackrel{\text { def }}{=} \inf \left\{t>0: t^{-1} x \in E\right\}
$$

with the convention that $\rho(x)=\infty=\inf \emptyset$ if no $t>0$ gives $t^{-1} x \in E$. This called the Minkowski functional defined by E.
a. Show that ρ is a sublinear functional, namely it satisfies $\rho(0)=0, \rho(x+y) \leq \rho(x)+\rho(y)$, and $\rho(\lambda x)=\lambda \rho(x)$ for all $x, y \in X$ and all $\lambda>0$.
b. Suppose in addition that X is a normed linear space and E is an open convex set containing 0 . Prove that the Minkowski functional defined by E is finite at every $x \in X$ and that $x \in E$ if and only if $\rho(x)<1$.
19. Let X be a linear space and let $\rho: X \rightarrow \mathbf{R}$ be a sublinear functional that is finite at every point. Prove that

$$
|\rho(x)-\rho(y)| \leq \max (\rho(y-x), \rho(x-y))
$$

for every $x, y \in X$.
20. Let X be a normed linear space, let $E \subset X$ be an open convex set containing 0 , and let $\rho: X \rightarrow \mathbf{R}$ be the Minkowski functional defined by E. (See exercise 18 part a.) Prove that ρ is continuous on X.
21. Let X be a linear space and let $\rho: X \rightarrow \mathbf{R}$ be a sublinear functional. Suppose that M is a subspace of X and $f: M \rightarrow \mathbf{R}$ is a linear functional dominated by ρ, namely

$$
f(x) \leq \rho(x), \quad x \in M
$$

Prove that there exists a linear functional $F: X \rightarrow \mathbf{R}$ that satisfies $F(x)=f(x)$ for all $x \in M$ and $F(x) \leq \rho(x)$ for all $x \in X$.
NOTE: this implies the Hahn-Banach theorem, 18.5 on textbook p.173, in the special case $\rho(x) \stackrel{\text { def }}{=}\|x\|$.
22. Let X be a Banach space and suppose x and y are distinct points in X. Prove that there is a bounded linear functional f on X such that $f(x) \neq f(y)$.
Note: it may thus be said that there are enough bounded linear functionals on X to separate points.
23. Let X be a Banach space, let $A \subset X$ be an open convex set, and let $B \subset X$ be a convex set disjoint from A. Prove that there exists a bounded real-valued linear functional f and a constant $s \in \mathbf{R}$ such that $f(a)<s \leq f(b)$ for all $a \in A$ and all $b \in B$.

Hint: Consider the difference set $E=A-B+\left(a_{0}-b_{0}\right)$ for fixed $a_{0} \in A, b_{0} \in B$, and apply exercises 18,20 , and 21 .
24. Let X be a normed linear space. For any convex $B \subset X$, say that a subset $F \subset B$ is a face of B if, given $x, y \in B$ and $0<\theta<1$ with $\theta x+(1-\theta) y \in F$, one may conclude that $x, y \in F$.
a. Suppose f is a bounded linear functional on X and $B \subset X$ is a convex subset such that $\beta \stackrel{\text { def }}{=} \sup \{f(x): x \in B\}$ is finite. Define

$$
F \stackrel{\text { def }}{=}\{x \in B: f(x)=\beta\} .
$$

Prove that F is a face of B.
b. Suppose B is a convex set, $F \subset B$ is a face of B, and $G \subset F$ is any subset. Prove that G is a face of F if and only if G is a face of B.
25. Let X be a linear space. For any convex $B \subset X$, say that $e \in B$ is an extreme point of B iff

$$
(\forall x, y \in B)(\forall \theta \in(0,1)) \quad e=\theta x+(1-\theta) y \Rightarrow e=x=y
$$

a. Suppose B is an open convex set in a normed linear space X. Prove that B has no extreme points.
b. Suppose B is a compact convex set in a Banach space X. Prove that if B is non-empty then B contains an extreme point.
(Hint: Apply Zorn's lemma to the collection of closed non-empty faces of B partially ordered by $F_{1} \leq F_{2}$ iff F_{2} is a face of F_{1}. Show that any maximal element contains a single point of B, which is therefore an extreme point.)
26. Let X be a linear space and $A \subset X$ any subset. Define the convex hull of A to be

$$
\operatorname{ch}(A) \stackrel{\text { def }}{=}\{\theta x+(1-\theta) y: x, y \in A ; 0 \leq \theta \leq 1\}
$$

If X is a normed linear space, define the closed convex hull of A to be the closure of ch (A), and denote it by $\overline{\operatorname{ch}}(A)$.
a. Prove that if $A \subset B \subset X$, then $\overline{\operatorname{ch}}(A) \subset \overline{\operatorname{ch}}(B)$.
b. Prove that if A is a closed convex set, then $A=\overline{\mathrm{ch}}(A)$.
27. Let X be a Banach space and suppose that $A \subset X$ is compact and convex. Let $E \subset A$ be the set of extreme points of A as defined in exercise 25 . Prove that $A=\overline{\mathrm{ch}}(E)$.

Hint: use exercises 23 and 26.
Note: this is the Krein-Milman theorem.

