Math 5052
 Measure Theory and Functional Analysis II Homework Assignment 8

Prof. Wickerhauser

Due Friday, February 19th, 2016

Please do Exercises 2, 3, 5*, 6, 10*, 11, 12, 15, 16* 17.
Exercises marked with $\left(^{*}\right)$ are especially important and you may wish to focus extra attention on those. You are encouraged to try the other problems in this list as well.
Note: "textbook" refers to "Real Analysis for Graduate Students," version 2.1, by Richard F. Bass. Some of these exercises originate from that source.

1. Let $\langle f, g\rangle \stackrel{\text { def }}{=} \int_{0}^{1} f(x) \overline{g(x)} d x$ be the usual inner product in $L^{2}([0,1])$. Prove that $C([0,1])$ is not a Hilbert space with respect to this inner product and its derived norm.
2. Suppose that $\left\{x_{n}\right\}$ is a sequence in a Hilbert space H. Suppose $\left\|x_{n}\right\| \rightarrow\|x\|$ and $(\forall y \in H)\left\langle x_{n}, y\right\rangle \rightarrow$ $\langle x, y\rangle$ as $n \rightarrow \infty$. Prove that $\left\|x_{n}-x\right\| \rightarrow 0$ as $n \rightarrow \infty$.
3. Suppose M is a subspace of a Hilbert space H.
a. Prove that if M is closed, then $\left(M^{\perp}\right)^{\perp}=M$.
b. Find a counterexample where M is not closed and $\left(M^{\perp}\right)^{\perp} \neq M$.
4. Prove that if H is infinite-dimensional, namely there are linearly independent subsets $\left\{x_{1}, \ldots, x_{n}\right\}$ for all $n=1,2, \ldots$, then the closed unit ball in H is not compact.
5. Suppose $\left\{a_{n}: n=1,2, \ldots\right\}$ is a sequence of real numbers such that

$$
\sum_{n=1}^{\infty} a_{n} b_{n}<\infty
$$

whenever $\sum_{n=1}^{\infty} b_{n}^{2}<\infty$. Prove that $\sum_{n=1}^{\infty} a_{n}^{2}<\infty$.
6. Say that $x_{n} \rightarrow x$ weakly in a Hilbert space H if $\left\langle x_{n}, y\right\rangle \rightarrow\langle x, y\rangle$ for every $y \in H$. Prove that if x_{n} is a sequence in H bounded by $\sup _{n}\left\|x_{n}\right\| \leq 1$, then there is a subsequence n_{j} and an element $x \in H$ with $\|x\| \leq 1$ such that $x_{n_{j}} \rightarrow x$ weakly as $j \rightarrow \infty$.
7. If A is a Lebesgue measurable subset of $[0,2 \pi)$, prove that

$$
\lim _{n \rightarrow \infty} \int_{A} e^{i n x} d x=0
$$

(This is a special case of the Riemann-Lebesgue lemma.)
8. Suppose that μ, ν are finite measures on a measurable space (X, \mathcal{A}), with $\nu \ll \mu$. Assume that $\nu(A) \leq \mu(A)$ for all measurable A.
For real-valued $f \in L^{2}(X, \mu)$, define $L(f) \stackrel{\text { def }}{=} \int_{X} f d \mu$.
a. Show that L is a bounded linear functional on $L^{2}(X, \mu)$.
b. Show that there exists a real-valued measurable function $g \in L^{2}(X, \mu)$ such that $L(f)=\int_{X} f g d \mu$ for all $f \in L^{2}(X, \mu)$. (Hint: use theorem 19.10 on textbook p.188.)
c. Show that g from part b is the Radon-Nikodym derivative $d \nu / d \mu$.

Note: by exercise 13.6 on textbook p.105, the assumption $\nu(A) \leq \mu(A)$ imposes no restriction as one may replace μ with $\mu+\nu$. Hence, this is an alternate proof of the Radon-Nikodym theorem as a corollary of theorem 19.10.
9. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is continuous and 1-periodic, namely $f(x+1)=f(x)$ for all $x \in \mathbf{R}$. Prove that if $\gamma \in \mathbf{R}$ is irrational, then

$$
\lim _{n \rightarrow \infty} \sum_{j=1}^{n} f(j \gamma)=\int_{0}^{1} f(x) d x
$$

(This is a special case of the Birkhoff ergodic theorem.)
10. Suppose that M is a closed subspace of a Hilbert space H. Fix $x \in H$ and define $x+M \stackrel{\text { def }}{=}\{x+y$: $y \in M\}$.
a. Prove that $x+M$ is a closed convex subset of H.
b. Let $Q x$ be the (unique) point of $x+M$ with smallest norm and let $P x=x-Q x$. (P is called the orthogonal projection of x onto M.) Prove that P and Q are surjective from H to M and M^{\perp}, respectively.
c. Prove that P and Q are linear mappings.
d. Prove that if $y \in M$ then $P y=y$ and $Q y=0$.
e. Prove that if $z \in M^{\perp}$ then $P z=0$ and $Q z=z$.
f. Prove that $\|w\|^{2}=\|P w\|^{2}+\|Q w\|^{2}$ for any $w \in H$.
11. Suppose $\left\{e_{n}\right\}$ is a countable orthonormal basis for a Hilbert space H and $\left\{f_{n}\right\}$ is a countable orthonormal set such that

$$
\sum_{n}\left\|e_{n}-f_{n}\right\|^{2}<1
$$

Prove that $\left\{f_{n}\right\}$ is a basis.
12. Suppose that $\left\{e_{n}\right\}$ and $\left\{f_{n}\right\}$ are countable orthonormal bases for a Hilbert space H. Define a linear transformation $T: H \rightarrow H$ by

$$
T\left(\sum_{n} c_{n} e_{n}\right)=\sum_{n} c_{n} f_{n}
$$

a. Prove that T is continuous and compute the operator norm of T.
b. Prove that $\langle T x, T y\rangle=\langle x, y\rangle$ for all $x, y \in H$.
13. Let H, G be Hilbert spaces. Say that a linear function $T: H \rightarrow G$ is an isometry if $\langle T x, T y\rangle_{G}=\langle x, y\rangle_{H}$ for every $x, y \in H$.
a. Prove that an isometry T is continuous and compute the operator norm of T.
b. Prove that if T is an isometry then it is injective.
c. Must an isometry be surjective? Supply a proof or a counterexample.
d. Suppose T_{1} and T_{2} are isometries. Must $T_{1}+T_{2}$ be an isometry?
14. Let H be a Hilbert spaces. Say that a linear function $T: H \rightarrow H$ is selfadjoint if $\langle T x, y\rangle=\langle x, T y\rangle$ for every $x \in H$.
a. Prove that if T is selfadjoint, then $\langle T x, x\rangle$ is real-valued for all $x \in H$.
b. Say that selfajoint T is positive definite if $\langle T x, x\rangle>0$ for all $x \neq 0$. Prove that such T must be injective.
c. Give an example of a positive definite T that is not surjective.
15. Let X, Y be Hilbert spaces. Suppose that $T: X \rightarrow Y$ is a bounded linear function. Prove that there exists a unique bounded linear function $T^{*}: Y \rightarrow X$ satisfying

$$
(\forall x \in X)(\forall y \in Y)\langle T x, y\rangle_{Y}=\left\langle x, T^{*} y\right\rangle_{X}
$$

(Such T^{*} is called the adjoint of T.)
16. Suppose X, Y are Hilbert spaces, and write $T^{*}: Y \rightarrow X$ for the adjoint of bounded linear function $T: X \rightarrow Y$ as in exercise 15.
a. Prove that $\left(T^{*}\right)^{*}=T$. Conclude that $\|T\|=\left\|T^{*}\right\|$.
b. Show that $\left(T_{1}+c T_{2}\right)^{*}=T_{1}^{*}+\bar{c} T_{2}^{*}$ for any T_{1}, T_{2} and $c \in \mathbf{C}$.
c. Prove that $T^{*} T: X \rightarrow X$ is selfadjoint and, if T is injective, also positive definite.
d. Suppose that T is an isometry (see exercise 13). Prove that $T^{*} T: X \rightarrow X$ is the identity, and $T T^{*}: Y \rightarrow Y$ is an orthogonal projection.
e. Suppose that T is a surjective isometry. Prove that $T T^{*}: Y \rightarrow Y$ is the identity.
17. Suppose that H is a separable Hilbert space and write ℓ^{2} for the Hilbert space of square-summable sequences in C. Prove that there is a bijective linear isometry $T: \ell^{2} \rightarrow H$. (Hint: see exercise 12.)
18. Define the Haar function $h: \mathbf{R} \rightarrow \mathbf{R}$ by

$$
h \stackrel{\text { def }}{=} \chi_{[0,1 / 2)}-\chi_{[1 / 2,1)} ; \quad h(t) \stackrel{\text { def }}{=} \begin{cases}0, & \text { if } t<0 \text { or } t \geq 1 \\ 1, & \text { if } 0 \leq t<1 / 2 \\ -1, & \text { if } 1 / 2 \leq t<1\end{cases}
$$

For integers j, k, define

$$
h_{j, k}(t) \stackrel{\text { def }}{=} 2^{j / 2} h\left(2^{j} t-k\right) .
$$

Prove that

$$
H \stackrel{\text { def }}{=}\left\{h_{j, k}: j, k \in \mathbf{Z}\right\}
$$

is an orthonormal basis for $L^{2}(\mathbf{R})$.
Note: H is called the Haar basis. It is defined by the mother function $h_{0,0}=h$, and its elements satisfy

$$
\operatorname{supp} h_{j, k}=\left[\frac{k}{2^{j}}, \frac{k+1}{2^{j}}\right]
$$

