
Math 5052

Measure Theory and Functional Analysis II

Homework Assignment 11

Prof. Wickerhauser

Due Friday, April 15, 2016

Read Chapters 23 (Sobolev spaces) and 26 (Distributions) in the textbook.

Please do Exercises 4, 5, 6, 7, 13, 15, 18, 22, 23, 25.

Exercises marked with (*) are especially important and you may wish to focus extra attention on those.

You are encouraged to try the other problems in this list as well.

Note: “textbook” refers to “Real Analysis for Graduate Students,” version 2.1, by Richard F. Bass. Some

of these exercises originate from that source.

1. Prove that if p1, . . . , pn > 1 with
n∑
i=1

1

pi
= 1,

and µ is a σ-finite measure, then ∫
|f1 · · · fn| dµ ≤ ‖f1‖p1 · · · ‖fn‖pn .

This is known as the generalized Hölder inequality.

2. Suppose 1 ≤ p <∞ and f ∈ Lp. Prove that if there exists a sequence {fm} such that

1. (∀m)fm ∈ C∞K ,

2. ‖f − fm‖p → 0 as m→∞,

3. for all |j| ≤ k, Djfm converges in Lp,

then f ∈W k,p.

3. Suppose 1 ≤ p <∞ and f ∈W k,p. Prove that there exists a sequence {fm} such that

1. (∀m)fm ∈ C∞K ,

2. ‖f − fm‖p → 0 as m→∞,
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3. for all |j| ≤ k, Djfm converges in Lp.

4. Suppose 1
r = 1

p + 1
q − 1. Prove that

‖f ∗ g‖r ≤ ‖f‖p‖g‖q.

This is known as Young’s inequality.

5. Prove that W k,2 is a Hilbert space with respect to the inner product

〈f, g〉 def
=

∫
(1 + |u|2)kf̂(u) ĝ(u) du.

Here f̂ , ĝ denote the Fourier transforms of f, g respectively.

Hint: use Plancherel’s theorem.

6. For real number s, define

Hs def
= {f :

∫
(1 + |u|2)s|f̂(u)|2 du <∞}.

Prove that if s > n/2, then f̂ belongs to L1 and thus f is continuous.

Note: this is a particular case of the Sobolev embedding theorem.

7. Does the product rule hold for weak derivatives? That is, if p ≥ 2 and f, g ∈ W 1,p, is fg ∈ W 1,p/2

with D(fg) = (Df)g + f(Dg)? Prove or give a counterexample.

Solution: One might be tempted to say “no” and seek a counterexample of the form f = g = χ(0,1),

which has D(fg) = Df = Dg = δ0 − δ1 but apparently fDg + gDf = 0. However, this example does

not work because the Dirac masses δ0 and δ1 do not belong to Lp for any p > 0. Consequently, the

products fDg and gDf are not well-defined and cannot be evaluated by pointwise multiplication.

The answer is in fact “yes,” the product rule does hold for weak derivatives in the Sobolev space W 1,p

with p ≥ 2. A key difference with distributions is that functions in the Sobolev space W 1,p can be

approximated in norm by test functions. Consequently, their products are well defined.

So, given f, g ∈ W 1,p, let φk → g be a norm convergent sequence of test functions, namely, φk ∈ C∞K
for all k and ‖φk − g‖W 1,p → 0 as k → ∞. In particular, this means ‖φk − g‖p → 0 as k → ∞ and

‖φ′k − Dg‖p → 0 as k → ∞, where Dg is the weak derivative of g and φ′k is the usual continuous

derivative of φk.

Since C∞K is preserved under multiplication, the product rule holds for weak derivatives of the products

fφk:

D(fφk) = φkDf + fDφk = φkDf + fφ′k,

in the sense of Lp, since the weak derivative Dφk and the usual derivative φ′k agree a.e.
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One may now use Hölder’s inequality: ‖fg‖c ≤ ‖f‖a‖g‖b whenever 1
c = 1

a + 1
b . (This generalization

follows immediately by taking |f |c and |g|c instead of f and g in the basic Hölder inequality for

1 = 1
a/c + 1

b/c .) Put a = b = p/2 and c = p to get

‖(φk − g)Df‖p/2 ≤ ‖φk − g‖p‖Df‖p → 0 and ‖(φ′k −Dg)f‖p/2 ≤ ‖φ′k −Dg‖p‖f‖p → 0,

as k →∞.

Now p ≥ 2 insures that ‖·‖p/2 satisfies the triangle inequality, so by the linearity of the weak derivative,

‖D(fφk)− fDg − gDf‖p/2 ≤ ‖(φk − g)Df‖p/2 + ‖(φ′k −Dg)f‖p/2 → 0,

as k →∞.

Since ‖fφk − fg‖p/2 → 0 by a similar Hölder inequality argument, conclude that fg ∈ Lp/2 and that

D(fg) = fDg + gDf as claimed. 2

8. Suppose that k ≥ 1, p < n/k, and q satisfies 1
q = 1

p −
k
n . Prove that there exists c such that

‖f‖q ≤ c

∥∥∥∥∥∥
∑
|j|≤k

|Dkf |

∥∥∥∥∥∥
p

.

(This is theorem 23.5 on textbook p.322.)

9. Suppose that ψ : R2 → R is a C1
K function that equals 1 on B(0, 1) ⊂ R2. Define

f(x1, x2)
def
= ψ(x1, x2)

x21
x21 + x22

.

Prove that f ∈W 1,p(R2) for 1 ≤ p < 2, but that f is not continuous.

Note: the function ψ is introduced only to insure that f has compact support.

10. Prove that if f ∈W 1,1(R), then f is continuous.

11. Prove that if f ∈W 1,p(R) for some p > 1, then f is Hölder continuous, namely, there exists c > 0 and

α ∈ (0, 1) such that |f(x)− f(y)| ≤ c|x− y|α for all x, y ∈ R.

12. Prove that if f ∈ C1
K , then

f(x) = c−11

n∑
j=1

∫
∂f

∂xj
(x− y)

yj
|y|n

dy,

where c1 is equal to the surface measure of ∂B(0, 1).

13. Suppose n ≥ 3. Prove the Nash inequality:(∫
|f |2

)1+2/n

≤ c1
(∫
|∇f |2

)(∫
|f |
)4/n
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if f ∈ C1
K(Rn), where the constant c1 depends only on n.

Note: the Nash inequality is also true when n = 2.

14. Can C∞K be given a metric topology such that convergence in C∞K is convergence in the metric? If so, is

the resulting metric space complete? If so, can the metric be chosen so that C∞K is a Banach space?

15. Define a function on S × S by setting

d(f, g)
def
=

∑
k,j

1

2j+k
‖f − g‖j,k

1 + ‖f − g‖j,k
.

a. Prove that this is a metric for the Schwartz class S.

b. Prove that a sequence in S converges in the Schwartz class sense if and only if it converges in the

metric d.

c. Is S with this metric a complete metric space?

16. Suppose that f ∈ C∞K and let

F (f) = lim
ε→0

∫
|x|>ε

f(x)

x
dx.

a. Prove that the limit exists.

b. Prove that F is a distribution.

17. Suppose that U : C∞K → C∞K is a continuous linear map. For a distribution F , define

TF (f)
def
= F (Uf), f ∈ C∞K .

a. Prove that TF is a distribution.

b. Suppose that V : C∞K → C∞K is a continuous linear map such that
∫
g(Uf) =

∫
(V g)f for all

f, g ∈ C∞K . Prove that if ∈ C∞K , then

TGg = GV g.

18. If µ is a finite measure defined on the Borel σ-algebra, prove that F given by F (f)
def
=

∫
f dµ is a

distribution.

19. Suppose g is a continuously differentiable function and g′ = h is its (classical) derivative. Prove that

DGg = Gh.

20. A positive distribution F is one such that F (f) ≥ 0 whenever f ≥ 0. Prove that if K is a compact set

and F is a positive distribution, then there exists a constant c such that

|F (f)| ≤ c sup
x∈K
|f(x)|,

for all f with supp f ⊂ K.
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21. Prove that if F is a positive distribution (see exercise 20 above) and has compact support, then there

exists a measure µ such that F (f) =
∫
f dµ for all f ∈ C∞K .

22. Suppose

F (f) = lim
ε→0

∫
1≥|x|≥ε

f(x)

x
dx.

a. Show that F is a distribution with compact support.

b. Prove that F has the representation F =
∑
j≤LD

jGgj of eq.26.3 on textbook p.388.

c. Find explicit values of L and gj for this F , as in theorem 26.15 on textbook page 388.

23. Let g1(x) = ex and g2(x) = ex cos(ex). Prove that Gg2 is a tempered distribution but Gg1 is not.

24. Prove eq.26.5 on textbook p.319, namely

ujDk(Ff)(u) = ik+jF(Dj(xkf))(u),

where F is the Fourier transform.

25. Determine FG1, Fδ, and FDjδ for j ≥ 1.
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