Math 5052 Measure Theory and Functional Analysis II Homework Assignment 12

Prof. Wickerhauser

Due Monday, May 2, 2016

Read Chapter 21 (Probability) in the textbook.

Please do Exercises 4, 9, 15*, 18, 22, 26, 35*, 38, 39, 40*

Exercises marked with (*) are especially important and you may wish to focus extra attention on those. You are encouraged to try the other problems in this list as well.

Note: "textbook" refers to "Real Analysis for Graduate Students," version 2.1, by Richard F. Bass. Some of these exercises originate from that source.

- 1. Show that if X has a continuous distribution function F_X and $Y = F_X(X)$, then Y has a density $f_Y(x) = \mathbf{1}_{[0,1]}(x)$.
- 2. Find an example of a probability space and three events A, B, and C such that $Pr(A \cap B \cap C) = Pr(A) Pr(B) Pr(C)$, but A, B, and C are not independent events.
- 3. Suppose that

$$\Pr(X \le x, Y \le y) = \Pr(X \le x) \Pr(Y \le y)$$

for all $x, y \in \mathbf{R}$. Prove that X and Y are independent random variables.

4. Find a sequence of events $\{A_n\}$ such that

$$\sum_{n=1}^{\infty} \Pr(A_n) = \infty$$

but $\Pr(A_n \text{ i.o.}) = 0.$

- 5. A random vector $X = (X_1, \ldots, X_n)$ has a *joint density* f_X if $\Pr(X \in A) = \int_A f_X(x) dx$ for all Borel subsets A of \mathbb{R}^n . Here the integral is with respect to n dimensional Lebesgue measure.
 - **a.** Prove that if the joint density of X factors into the product of densities of the X_j , namely $f_X(x) = \prod_{j=1}^n f_j(x_j)$, for almost every $x = (x_1, \ldots, x_n)$, then the X_j are independent.

- **b.** Prove that if X has a joint density and the X_j are independent, then each X_j has a density and the joint density of X factors into the product of the densities of the X_j .
- 6. Suppose $\{A_n\}$ is a sequence of events, not necessarily independent, such that $\sum_{n=1}^{\infty} \Pr(A_n) = \infty$. Suppose in addition that there exists a constant c such that for each $N \ge 1$,

$$\sum_{i,j=1}^{N} \Pr(A_n \text{ i.o.}) \le c \left(\sum_{i=1}^{N} \Pr(A_i)\right)^2.$$

Prove that $\Pr(A_n \text{ i.o.}) > 0$.

7. Suppose X and Y are independent, $E|X|^p < \infty$ for some $p \in [1, \infty)$, $E|Y| < \infty$, and EY = 0. Prove that

$$\mathcal{E}(|X+Y|^p) \ge \mathcal{E}|X|^p.$$

- 8. Suppose that X_i are independent random variables such that $\operatorname{Var} X_i/i \to 0$ as $i \to \infty$. Suppose also that $\operatorname{E} X_i \to a$. Prove that S_n/n converges in probability to a, where $S_n = \sum_{i=1}^n X_i$. (It is not assumed that the X_i are identically distributed.)
- 9. Suppose $\{X_i\}$ is a sequence of independent mean zero random variables, not necessarily identically distributed. Suppose that $\sup_i EX_i^4 < \infty$.
 - **a.** If $S_n \stackrel{\text{def}}{=} \sum_{i=1}^n X_i$, prove that there exists a constant c such that $ES_n^4 \leq cn^2$.
 - **b.** Prove that $S_n/n \to 0$ a.s.
- 10. Suppose $\{X_i\}$ is an i.i.d. sequence such that S_n/n converges a.s., where $S_n \stackrel{\text{def}}{=} \sum_{i=1}^n X_i$.
 - **a.** Prove that $X_n/n \to 0$ a.s.
 - **b.** Prove that $\sum_{n} \Pr(|X_n| > n) < \infty$.
 - c. Prove that $E|X_1| < \infty$.
- 11. Suppose $\{X_i\}$ is an i.i.d. sequence of random variables with $E|X_1| < \infty$.
 - **a.** Prove that the sequence $\{S_n/n\}$ is uniformly integrable by the definition in Exercise 7.16 on textbook p.58.
 - **b.** Prove that ES_n/n converges to EX_1 .
- 12. Suppose $\{X_i\}$ is an i.i.d. sequence of random variables with $E|X_1| < \infty$ and $EX_1 = 0$. Prove that

$$\frac{\max_{1 \le k \le n} |S_k|}{n} \to 0, \qquad \text{a.s.}$$

- 13. Suppose that $\{X_i\}$ is a sequence of independent random variables with mean zero such that $\sum_i \operatorname{Var} X_i < \infty$. Prove that S_n converges a.s. as $n \to \infty$, where $S_n \stackrel{\text{def}}{=} \sum_{i=1}^n X_i$.
- 14. Let $\{X_i\}$ be a sequence of random variables. The tail σ -field is defined to be

$$\mathcal{T} \stackrel{\text{def}}{=} \bigcap_{n \ge 1} \sigma(X_n, X_{n+1}, \ldots).$$

Let $S_n \stackrel{\text{def}}{=} \sum_{i=1}^n X_i$.

- **a.** Prove that the event $(S_n \text{ converges})$ is in \mathcal{T} .
- **b.** Prove that the event $(S_n/n > a)$ is in \mathcal{T} for each real number a.
- 15. Let $\{X_i\}$ be a sequence of independent random variables and let \mathcal{T} be the tail σ -field.
 - **a.** Prove that if $A \in \mathcal{T}$, then A is independent of $\sigma(X_1, \ldots, X_n)$ for each n.
 - **b.** Prove that if $A \in \mathcal{T}$, then A is independent of itself, and hence Pr(A) is either 0 or 1.

Note: part b is known as the Kolmogorov 0-1 law.

- 16. Let $\{X_i\}$ be an i.i.d. sequence of random variables. Prove that if $EX_1^+ = \infty$ and $EX_1^- < \infty$, then $S_n/n \to +\infty$ a.s., where $S_n \stackrel{\text{def}}{=} \sum_{i=1}^n X_i$.
- 17. Let $\mathcal{F} \subset \mathcal{G}$ be two σ -fields. Let H be the Hilbert space of \mathcal{G} -measurable random variables Y such that $EY^2 < \infty$ and let M be the subspace of H consisting of the \mathcal{F} -measurable random variables. Prove that if $Y \in H$, then $E[Y|\mathcal{F}]$ is equal to the orthogonal projection of Y onto the subspace M.
- 18. Suppose $\mathcal{F} \subset \mathcal{G}$ are two σ -fields and X and Y are bounded \mathcal{G} -measurable random variables. Prove that

$$\mathbf{E}[X\mathbf{E}[Y|\mathcal{F}]] = \mathbf{E}[Y\mathbf{E}[X|\mathcal{F}]].$$

19. Let $\mathcal{F} \subset \mathcal{G}$ be two σ -fields and let X be a bounded \mathcal{G} -measurable random variables. Prove that if

$$\mathbf{E}[XY] = \mathbf{E}[X\mathbf{E}[Y|\mathcal{F}]]$$

for all bounded \mathcal{G} -measurable random variables Y, then X is \mathcal{F} -measurable.

- 20. Suppose $\mathcal{F} \subset \mathcal{G}$ are two σ -fields and that X is \mathcal{G} -measurable with $EX^2 < \infty$. Set $Y \stackrel{\text{def}}{=} E[X|\mathcal{F}]$. Prove that if $EX^2 = EY^2$, then X = Y a.s.
- 21. Suppose $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots \subset \mathcal{F}_N$ are σ -fields. Suppose A_i is a sequence of random variables adapted to $\{\mathcal{F}_i\}$ such that $A_1 \leq A_2 \leq \cdots$ and $A_{i+1} A_i \leq 1$ a.s. for each *i*. Prove that if $\mathbb{E}[A_N A_i|\mathcal{F}] \leq 1$ a.s. for each *i*, then $\mathbb{E}A_N^2 < \infty$.

22. Let $\{X_i\}$ be an i.i.d. sequence of random variables with $\Pr(X_1 = 1) = \Pr(X_1 = -1) = \frac{1}{2}$. Let $S_n \stackrel{\text{def}}{=} \sum_{i=1}^n X_i$. This sequence $\{S_n\}$ is called a *simple random walk*. Let

$$L \stackrel{\text{def}}{=} \max\{k \le 9 : S_k = 1\} \land 9.$$

Prove that L is not a stopping time with respect to the family of σ -fields $\mathcal{F}_n = \sigma(S_1, \ldots, S_n)$.

23. Let $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots$ be an increasing family of σ -fields and let $\mathcal{F}_{\infty} \stackrel{\text{def}}{=} \sigma(\cup_n \mathcal{F}_n)$. If N is a stopping time, define

$$\mathcal{F}_N \stackrel{\text{def}}{=} \{A \in \mathcal{F}_\infty : A \cap (N \le n) \in \mathcal{F}_n \text{ for all } n.\}.$$

- **a.** Prove that \mathcal{F}_N is a σ -field.
- **b.** If M is another stopping time with $M \leq N$ a.s., and \mathcal{F}_M is defined analogously, prove that $\mathcal{F}_M \subset \mathcal{F}_N$.
- c. If X_n is a martingale with respect to $\{\mathcal{F}_n\}$ and N is a stopping time bounded by the real number K, prove that $\mathbb{E}[X_n|\mathcal{F}_N] = X_N$.
- 24. Let $\{X_i\}$ be a sequence of bounded i.i.d. random variables with mean 0. Let $S_n = \sum_{i=1}^n X_i$.
 - **a.** Prove that there exists a constant c_1 such that $M_n \stackrel{\text{def}}{=} e^{S_n c_1 n}$ is a martingale.
 - **b.** Show that there exists a constant c_2 such that

$$\Pr(\max_{1 \le k \le n} S_k > \lambda) \le 2e^{-c_2\lambda^2/n}$$

for all $\lambda > 0$.

- 25. Let $\{X_i\}$ be a sequence of i.i.d. standard normal random variables with mean 0. Let $S_n = \sum_{i=1}^n X_i$.
 - **a.** Prove that for each a > 0, $M_n \stackrel{\text{def}}{=} e^{aS_n a^2n/2}$ is a martingale.
 - **b.** Show that

$$\Pr(\max_{1 \le k \le n} S_k > \lambda) \le e^{-\lambda^2/2n}$$

for all $\lambda > 0$.

26. Let $\{X_n\}$ be a submartingale. Let

$$A_n \stackrel{\text{def}}{=} \sum_{i=2}^n (X_i - \mathbb{E}[X_i | \mathcal{F}_{i-1}])$$

Prove that $M_n \stackrel{\text{def}}{=} X_n - A_n$ is a martingale.

Note: this is known as the *Doob decomposition* of a submartingale.

27. Suppose M_n is a martingale. Prove that if

$$\sup_{n} \mathbb{E}M_n^2 < \infty,$$

then M_n converges a.s. and also in L^2 .

28. Set $(\Omega, \mathcal{F}, \mathbf{P})$ equal to $([0, 1], \mathcal{B}, m)$, where \mathcal{B} is the Borel σ -field on $[0, 1] \subset \mathbf{R}$ and m is Lebesgue measure. Define

$$X_n(\omega) \stackrel{\text{def}}{=} \begin{cases} 1, & \text{if } \omega \in \left[\frac{2k}{2n}, \frac{2k+1}{2^n}\right) \text{ for some } k \le 2^{n-1}; \\ -1, & \text{if } \omega \in \left[\frac{2k+1}{2n}, \frac{2k+2}{2^n}\right) \text{ for some } k \le 2^{n-1}. \end{cases}$$

- **a.** Prove that X_n converges weakly (in the probabilistic sense) to a nonzero random variable.
- **b.** Prove that X_n converges to 0 in the weak $L^2(m)$ sense, namely $E[X_nY] \to 0$ for all $Y \in L^2$.
- 29. Suppose X_n is a sequence of random variables that converges weakly to a random variable X. Prove that the sequence $\{X_n\}$ is tight.

Note: see textbook p.275 for the definition of tight.

- 30. Suppose $X_n \to X$ weakly and $Y_n \to 0$ in probability. Prove that $X_n Y_n \to 0$ in probability.
- 31. Given two probability measures P and Q on [0, 1] with the Borel σ -field, define

$$d(\mathbf{P},\mathbf{Q}) \stackrel{\text{def}}{=} \sup\{\left|\int f \, d\mathbf{P} - \int f \, d\mathbf{Q}\right| : f \in C^1, \|f\|_{\infty} \le 1, \|f'\|_{\infty} \le 1\}$$

Here C^1 is the collection of continuously differentiable functions $f : \mathbf{R} \to \mathbf{R}$, and f' is the derivative of f.

- **a.** Prove that d is a metric.
- **b.** Prove that $P_n \to P$ weakly if and only if $d(P_n, P) \to 0$.

Note: This metric makes sense only for probabilities defined on [0, 1]. There are other metrics for weak convergence that work in more general situations.

32. Suppose $F_n \to F$ weakly and every point of F is a continuity point. Prove that F_n converges to F uniformly over $x \in \mathbf{R}$:

$$\sup_{x \in \mathbf{R}} |F_n(x) - F(x)| \to 0.$$

- 33. Suppose $X_n \to X$ weakly. Prove that ϕ_{X_n} converges uniformly to ϕ_X on each bounded interval.
- 34. Suppose X_n is a collection of random variables that is tight. Prove that $\{\phi_{X_n}\}$ is equicontinuous on **R**.

- 35. Suppose $X_n \to X$ weakly, $Y_n \to Y$ weakly, and X_n and Y_n are independent for each n. Prove that $X_n + Y_n \to X + Y$ weakly.
- 36. X is said to be a gamma random variable with parameters λ and t if X has density

$$\frac{1}{\Gamma(x)}\lambda^t x^{t-1} e^{-\lambda t} \mathbf{1}_{(0,\infty)}(x),$$

where $\Gamma(t) \stackrel{\text{def}}{=} \int_0^\infty y^{t-1} e^{-t} \, dy$ is the Gamma function.

- **a.** Prove that an exponential random variable with parameter λ is also a gamma random variable with parameters 1 and λ .
- **b.** Prove that if X is a standard normal random variable, then X^2 is a gamma random variable with parameters 1/2 and 1/2.
- c. Find the characteristic function of a gamma random variable.
- **d.** Prove that if X is a gamma random variable with parameters t and λ , and X and Y are independent, then X + Y is also a gamma random variable. Determine the parameters of X + Y.
- 37. Suppose X_n is a sequence of independent random variables, not necessarily identically distributed, with $\sup_n E|X_n|^3 < \infty$ and $EX_n = 0$ and $\operatorname{Var} X_n = 1$ for each n. Prove that S_n/\sqrt{n} converges weakly to a standard normal random variable, where $S_n \stackrel{\text{def}}{=} \sum_{i=1}^n X_n$.
- 38. Suppose that X_n is a Poisson random variable with parameter n for each n. Prove that $(X_n n)/\sqrt{n}$ converges weakly to a standard normal random variable as $n \to \infty$.
- 39. Suppose that P is a probability measure on the Borel subsets of \mathbf{R}^n .
 - **a.** For $\omega = (\omega_1, \ldots, \omega_n) \in \mathbf{R}^n$, define $X_k(\omega) \stackrel{\text{def}}{=} \omega_k$ for $k = 1, \ldots, n$ and put $X = (X_1, \ldots, X_n)$. Prove that the law P_X of X is equal to P.
 - **b.** If P is a product measure, prove that the components of X are independent.
- 40. Prove that if X_t is a Brownian motion and a is a nonzero real number, then $Y_t \stackrel{\text{def}}{=} aX_{a^2t}$ is also a Brownian motion.
- 41. Let X_t be a Brownian motion. Fix $n \ge 1$ and let $M_k \stackrel{\text{def}}{=} X_{k/2^n}$.
 - **a.** Prove that M_k is a martingale.
 - **b.** Prove that if $a \in \mathbf{R}$, then $e^{aM_k a^2(k/2^n)/2}$ is a martingale.
 - c. Prove that

$$P\left(\sup_{t\leq r} X_t \geq \lambda\right) \leq e^{-\lambda^2/2r}.$$

42. Let X_t be a Brownian motion. Let

$$A_n \stackrel{\text{def}}{=} \left(\sup_{t \le 2^{n+1}} X_t > \sqrt{4 \cdot 2^n \log \log 2^n} \right).$$

- **a.** Prove that $\sum_{n=1}^{\infty} \Pr(A_n) < \infty$.
- **b.** Prove that

$$\limsup_{t \to \infty} \frac{X}{\sqrt{t \log \log t}} < \infty, \qquad \text{a.s.}$$

Note: these results are part of what is called the *law of the interated logarithm* for Brownian motion.

43. Let X_t be a Brownian motion. Let $M > 0, t_0 > 0$, and

$$B_n \stackrel{\text{def}}{=} (X_{t_0+2^{-n}} - X_{t_0+2^{-n-1}} > M2^{-n-1})$$

- **a.** Prove that $\sum_{n=1}^{\infty} \Pr(B_n) = \infty$.
- **b.** Prove that the function $t \mapsto X_t(\omega)$ is not differentiable at $t = t_0$.
- c. Prove that except for ω in a null set, the function $t \mapsto X_t(\omega)$ is not differentiable at almost every t with respect to Lebesgue measure on $[0, \infty)$.

Note: it can be shown by a different proof that the function $t \mapsto X_t(\omega)$ is nowhere differentiable except for ω in a null set.

- 44. Let X_t be a Brownian motion and let h > 0 be given. Prove that except for ω in a null set, there are times $t \in (0, h)$ for which $X_t(\omega) > 0$. (These times will depend on ω .) Conclude that almost every Brownian path must oscillate quite a bit near 0.
- 45. Let X_t be a Brownian motion on [0,1] Prove that $Y_t \stackrel{\text{def}}{=} X_1 X_{1-t}$ is also a Brownian motion.