Perron-Frobenius Theorem

Mladen Victor WICKERHAUSER

Washington University in St. Louis, Missouri
victor@wustl.edu
http://www.math.wustl.edu/~victor

Dimensionality Reduction and Manifold Estimation
PMF — University of Zagreb
Winter, 2022
Positive and Nonnegative Square Matrices

These arise in graph theory, probability, and other contexts.

- **Nonnegative** $M = M(i,j) \geq 0$, for $i, j = 1, \ldots, n$.
- **Positive** if $M(i,j) > 0$, all i, j.
- **Irreducible** if M is nonnegative and $\exp(M) - I$ is positive.

Lemma

M is irreducible if and only if $(\forall i,j)(\exists k) M^k(i,j) > 0$.

Proof.

Exercise.
Local Similarity

Given points \(V = \{v_1, \ldots, v_m\} \subset \mathbb{R}^d \) (or, more generally, in some metric space).

Define a nonnegative, symmetric similarity function \(s \) on a subset of \(V \times V \) of sufficiently similar pairs:

\[
s(i, j) = s(j, i) = \begin{cases}
 s(v_i, v_j), & \|v_i - v_j\| < \epsilon, \\
 0, & \text{otherwise}.
\end{cases}
\]

Here \(\epsilon > 0 \) is a threshold (in the original metric) that defines “sufficiently similar.”

Remark. Specifying \(k \) nearest neighbors by metric is an alternative criterion for sufficiently similar.
Global Similarity

Goal: Extend the similarity function to all of $V \times V$.

Method 1: Combine similarity over all paths of nonzero similarity.
 ▶ like the initial step in multidimensional scaling
 ▶ like finding shortest paths in weighted graphs
 ▶ but searching over many paths has high complexity

Method 2: Construct a diffusion process
 ▶ similarity is like an infinitesimal generator
 ▶ seek existence of long-time equilibrium solutions
 ▶ computation: find stationary distributions for Markov chains
Choose Method 2 for generality and speed.

Extend the similarity function to all of $\mathbb{V} \times \mathbb{V}$ by

- exponenentiating an infinitesimal generator, as in diffusion
- iterating a transition matrix, as for a Markov chain

In the discrete case, these are both applications for the Perron-Frobenius theorem.
Graphs

Let G be a graph with vertices $\mathcal{V} = \{1, \ldots, n\}$, edges $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$.

- **Adjacency matrix:**

 $$A(i, j) = \begin{cases} 1, & (i, j) \in \mathcal{E}, \\ 0, & \text{otherwise}. \end{cases}$$

 Generalization: weighted graphs $A(i, j) = w_{ij} \geq 0$ if $(i, j) \in \mathcal{E}$.

- **Degree matrix:**

 $$D(i, j) = \begin{cases} \# \{k : (i, k) \in \mathcal{E}\}, & i = j, \\ 0, & \text{otherwise}. \end{cases}$$

 This is a diagonal $n \times n$ matrix.

 For a weighted graph, use $D(i, i) = \sum_{j=1}^{n} w_{ij}$.
Transition Matrices

Suppose a graph has adjacency matrix A and degree matrix D.

Transition matrix:

$$T = D^{-1}A$$

Lemma

Row sums of T are always 1.

Proof.

Fix i, compute

$$\sum_{j=1}^{n} T(i, j) = D(i, i)^{-1} \sum_{j=1}^{n} A(i, j) = \frac{\sum_{j=1}^{n} w_{ij}}{\sum_{j=1}^{n} w_{jj}} = 1.$$
Stochastic Matrices

Row stochastic M: Nonnegative with unit row sums:

$$(\forall i) \sum_{j=1}^{n} M(i, j) = 1.$$

Column stochastic: Nonnegative with unit column sums:

$$(\forall j) \sum_{i=1}^{n} M(i, j) = 1.$$

Doubly stochastic: both row and column stochastic.
Probability Vectors

Define a row pdf to be a probability function written as a row vector on the finite space $\Omega = \{1, \ldots, n\}$:

$$\mathbf{p} = \begin{pmatrix} p_1 & \ldots & p_n \end{pmatrix}; \quad (\forall j) p_j \geq 0; \quad \sum_{j=1}^{n} p_j = 1.$$

Similarly, column pdf \mathbf{q} is a column vector with nonnegative entries that sum to 1.

Lemma

For row stochastic M, if \mathbf{p} is a row pdf, then $\mathbf{p}M$ is a row pdf. □

Also, column stochastic M maps column pdf \mathbf{q} to column pdf $M\mathbf{q}$. Both proofs are left as exercises.
Finite Stationary Markov Chains

Stochastic process on the *finite* state space $\Omega = \{1, \ldots, n\}$.

Map initial pdf p_0 to pdfs $p_1, p_2, \ldots, p_k, \ldots$ by iterated application of stochastic M.

Stationary if the same M is used at each step.

Questions:

- does $p_\infty \overset{\text{def}}{=} \lim_{k\to\infty} p_k$ exist?
- can p_∞ be found by iteration? How fast will it converge?
- is p_∞ independent of p_0?

If a limit p_∞ exists, it is called a *stationary distribution* for M.
Stationary distributions $q = p_\infty$ (for the column stochastic case) solve the eigenvalue equation

$$q = Mq$$

with column stochastic M having eigenvalue 1.

Since q is a (column) pdf, the solution is unique if and only if eigenvalue 1 has multiplicity 1. (Prove this as an exercise.)

Solution q is a limit of iterations of M if all other eigenvalues λ of M satisfy $|\lambda| < 1$.

Convergence $\|p_\infty - p_k\| = O(|\lambda|^{-k})$ as $k \to \infty$, where $|\lambda| < 1$ is largest-magnitude eigenvalue with $|\lambda| < 1$.
Spectral Radius and Matrix Norms

Spectral radius for \(n \times n \) matrix \(M \) with eigenvalues \(\{\lambda_i\} \subset \mathbb{C} \):

\[
\rho(M) \overset{\text{def}}{=} \max\{|\lambda_1|, \ldots, |\lambda_n|\},
\]

Matrix norm for \(n \times n \) matrices \(M, N \) and scalars \(c \), satisfies:

- \(\|M\| \geq 0 \), with \(\|M\| = 0 \iff M = 0 \); \(\|cM\| = |c|\|M\| \).
- \(\|M + N\| \leq \|M\| + \|N\| \) and \(\|MN\| \leq \|M\|\|N\| \).

Theorem

Any two norms on a finite-dimensional vector space are equivalent:

\(\| \cdot \|_\alpha \sim \| \cdot \|_\beta \), meaning \((\exists K > 0)(\forall M) \|M\|_\alpha \leq K\|M\|_\beta \).

Proof.

See mfmm30–32.pdf on class website. Note that \(K = K(\alpha, \beta, n) \) depends on the norms and on the dimension.
Example Matrix Norms

Fredholm Norm: \[\| M \|_F \overset{\text{def}}{=} \left(\sum_{i,j} |M(i,j)|^2 \right)^{1/2} \] (this is Euclidean norm on \(\mathbb{C}^{n \times n} \), the matrix coefficients)

One Norm: \[\| M \|_1 \overset{\text{def}}{=} \max_j \sum_i |M(i,j)| \]

Infinity Norm: \[\| M \|_\infty \overset{\text{def}}{=} \max_i \sum_j |M(i,j)| \]

Operator Norm: \[\| M \|_{\text{op}} \overset{\text{def}}{=} \sup_{x \neq 0} \frac{\| Mx \|}{\| x \|} = \sup_{\| x \| = 1} \| Mx \|. \]

Lemma

\[\| M \|_{\text{op}} = \rho(M^*M)^{1/2} \text{ is the largest singular value of } M. \]

Proof.

\[\| M \|_{\text{op}}^2 = \sup_{\| x \| = 1} \| Mx \|^2 = \sup_{\| x \| = 1} \langle M^*Mx, x \rangle = \rho(M^*M). \]
Induced Operator Norms

Let $\| \cdot \|_X$ be any norm on \mathbb{C}^n.

For $n \times n$ matrix M, define its induced operator norm by

$$\| M \|_{X, \text{op}} \overset{\text{def}}{=} \sup_{x \neq 0} \frac{\| Mx \|_X}{\| x \|_X}.$$

The resulting function $\| \cdot \|_{X, \text{op}}$ is a matrix norm.

Lemma

Let $\| \cdot \|$ be any matrix norm. Then $\| I \| \geq 1$.

Proof.

$I \neq 0$, so $\| I \| > 0$, and $\| I \|^2 \geq \| I^2 \| = \| I \|$, so $\| I \| \geq 1$.

\square
Continuity of Matrix Norms

Fix \(n \) and let \(\| \cdot \| \) be any matrix norm on \(n \times n \) matrices.

Lemma
\(M \mapsto \| M \| \) is a continuous function on the coefficients of \(M \).

Proof.
Since \(\| M \| \leq \| M - N \| + \| N \| \) and \(\| N \| \leq \| N - M \| + \| M \| \), it follows that
\[
\| \| M \| - \| N \| \| \leq \| M - N \|.
\]
Since \(\| \cdot \| \sim \| \cdot \|_F \), there is some \(0 < K < \infty \) such that
\[
\| M - N \| \leq K \| M - N \|_F.
\]
Conclude that
\[
\| \| M \| - \| N \| \| \leq \| M - N \| \leq K \| M - N \|_F
\]
so that \(\| \cdot \| \) is (Lipschitz) continuous with respect to Euclidean norm on \(\mathbb{C}^{n \times n} \), the vector space of matrix coefficients. \qed
Matrix Norm and Boundedness

Fix n and let $\| \cdot \|$ be any matrix norm on $n \times n$ matrices.

Lemma

There is some constant $K > 0$ such that, for all $n \times n$ matrices M and all vectors x, $\| Mx \| \leq K \| M \| \| x \|$, where $\| x \|$ is the Euclidean norm of $x \in \mathbb{C}^n$.

Proof.

Define the matrix $X(i,j) = x_i$ (each column is a copy of x). Then $\| X \|_F = \sqrt{n} \| x \|$, and $\| MX \|_F = \sqrt{n} \| Mx \|$.

But there exists $K > 0$ such that $\| M \|_F \leq K \| M \|$, so

$$\| Mx \| = \frac{1}{\sqrt{n}} \| MX \|_F \leq \frac{1}{\sqrt{n}} \| M \|_F \| X \|_F \leq K \| M \| \| x \|,$$

by the equivalence of matrix norms $\| \cdot \| \sim \| \cdot \|_F$. \qed
Norm versus Spectral Radius

Suppose that \(\| \cdot \| \) is any matrix norm.

Lemma

If \(\rho(M) > 1 \), then \(\lim_{k \to \infty} \| M^k \| = \infty \).

Proof.

Since \(\rho(M) > 1 \), \(M \) has an eigenvalue \(\lambda \) with \(|\lambda| > 1 \). Let \(v \neq 0 \) be an eigenvector for \(\lambda \). Then as \(k \to \infty \),

\[
\| M^k \|_{op} = \sup_{x \neq 0} \frac{\| M^k x \|}{\| x \|} \geq \frac{\| M^k v \|}{\| v \|} = |\lambda|^k \to \infty.
\]

But \(\| \cdot \|_{op} \sim \| \cdot \| \), so \(\| M^k \| \geq \frac{1}{K} \| M^k \|_{op} \) for some \(0 < K < \infty \), so \(\| M^k \| \to \infty \) as \(k \to \infty \).
Special Case: Nilpotent Matrices

If \(M \) is nilpotent, namely \(M^k = 0 \) for some \(k \), then \(\rho(M) = 0 \), because any eigenvalue \(\lambda \) with eigenvector \(v \neq 0 \) satisfies

\[
0 = 0v = M^k v = \lambda^k v, \implies \lambda^k = 0, \implies \lambda = 0.
\]

Conversely, if \(\rho(M) = 0 \), then \(M \) is nilpotent. This follows from the Cayley-Hamilton theorem below.

If \(M \) is diagonalizable, then \(\rho(M) \) is its largest singular value, but this is false for more general \(M \). Example: nonzero nilpotent

\[
N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad N^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad N^T N = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix},
\]

with eigenvalues 0, 0 so \(\rho(N) = 0 \), but with singular values 0, 1.
Jordan Canonical Form

Theorem

A square matrix M with eigenvalues $\{\lambda_i\}$ has a Jordan canonical form: $M = SJS^{-1}$ with invertible S and block diagonal

$$
J = \begin{pmatrix}
J_1 & 0 \\
\vdots & \ddots \\
0 & J_m
\end{pmatrix}, \quad \text{for } J_i =
\begin{pmatrix}
\lambda_i & 1 & 0 \\
& \ddots & \ddots \\
& 0 & \lambda_i
\end{pmatrix} = \lambda_i I + N_i
$$

- Block J_i corresponds to eigenvalue λ_i.
- The order n_i of J_i (and of N_i) is at most the multiplicity of λ_i.
- N_i is nilpotent, with $N_i^k = 0$ for all $k \geq n_i$.

Corollary: $M^k = (SJS^{-1})^k = SJ^kS^{-1}$.

Cayley-Hamilton Theorem

Theorem

If χ is the characteristic polynomial of matrix M, then $\chi(M) = 0$.

Proof.

Let $M = SJS^{-1}$ be the Jordan canonical form of M. Then

$$\chi(M) = S\chi(J)S^{-1} = S \begin{pmatrix} \chi(J_1) & 0 \\ 0 & \ddots & \ddots \\ & 0 & \chi(J_m) \end{pmatrix},$$

where $J_i = \lambda_i I + N_i$ is a Jordan block. Let n_i be its order, so nilpotent $N_i^{n_i} = 0$. Now write $\chi(z) = \prod_j (z - \lambda_j)^{n_j}$ to see

$$\chi(J_i) = (\lambda_i I + N_i - \lambda_i I)^{n_i} \prod_{j \neq i} (J_i - \lambda_j I)^{n_j} = N_i^{n_i} \prod_{i \neq j} (J_i - \lambda_j I)^{n_j} = 0.$$

Conclude that $\chi(J) = 0$, so therefore $\chi(M) = 0$. \qed
Powers of Jordan Blocks

Lemma

Let \(J = \lambda I + N \) be an \(m \times m \) Jordan block for eigenvalue \(\lambda \). Then
\[
\lim_{k \to \infty} J^k = 0 \text{ if and only if } |\lambda| < 1.
\]

Proof.

Obviously true for \(m = 1 \), so suppose \(m > 1 \) with nilpotent \(N \neq 0 \).
Since \(N^m = 0 \), expand \(J^k = (\lambda I + N)^k \), for \(k \geq m - 1 \), as
\[
J^k = \lambda^k I + \binom{k}{1} \lambda^{k-1} N + \cdots + \binom{k}{m-1} \lambda^{k+1-m} N^{m-1}.
\]

If \(|\lambda| < 1 \), then \(J^k = O(k^{m-1}|\lambda|^{k+1-m}) \to 0 \) as \(k \to \infty \).

If \(|\lambda| \geq 1 \), then \(J^k N^{m-1} = \lambda^k N^{m-1} \) does not converge to 0 as \(k \to \infty \), and since \(N^{m-1} \) is constant, neither does \(J^k \). \(\square\)
Powers of Square Matrices

Corollary

Let M be a square matrix with spectral radius $\rho(M)$. Then $\lim_{k \to \infty} M^k = 0$ if and only if $\rho(M) < 1$.

Proof.

Let $M = SJS^{-1}$ be the Jordan canonical decomposition of M. Then $M^k = SJ^kS^{-1}$ for all $k = 1, 2, \ldots$, and since S is nonsingular, $\lim_{k \to \infty} M^k = 0$ if and only if $\lim_{k \to \infty} J^k = 0$.

If $\rho(M) < 1$, then $\lim_{k \to \infty} J^k = 0$, so $\lim_{k \to \infty} M^k = 0$.

But if $\rho(M) \geq 1$, then there exists some eigenvalue λ of M with $|\lambda| \geq 1$, so $\lim_{k \to \infty} J^k \neq 0$, so $\lim_{k \to \infty} M^k \neq 0$. \qed

Note: Every matrix norm is a continuous function of the matrix coefficients, so $\lim_{k \to \infty} \|M^k\| = 0$ if and only if $\rho(M) < 1$.
Zero Spectral Radius Implies Nilpotent

Corollary

Let M be an $n \times n$ matrix with spectral radius $\rho(M) = 0$. Then there exists $1 \leq k \leq n$ such that $M^k = 0$.

Proof.

Let $M = SJS^{-1}$ be the Jordan canonical decomposition of M. Since $\rho(M) = 0$, all eigenvalues of M must be zero, so every Jordan block $J_i = N_i$ is nilpotent with order $n_i \leq n$ equal to the order of block J_i.

Let $k = \max_i n_i$. Then $1 \leq k \leq n$, and $(\forall i) J_i^k = 0$.

Thus $J^k = 0$, so $M^k = SJ^kS^{-1} = 0$.

Alternate proof: Every eigenvalue is zero, so $\chi(z) = z^n$, so by the Cayley-Hamilton theorem, $\chi(M) = M^n = 0$. \qed
Gel’fand’s Formula

Lemma
For any $n \times n$ matrix M and norm $\| \cdot \|$, $\rho(M) = \lim_{k \to \infty} \|M^k\|^{1/k}$.

Proof.
If $\rho(M) = 0$, then $M^n = 0$ by the Cayley-Hamilton Theorem. Hence $M^k = 0$ for all $k \geq n$, so $\lim_{k \to \infty} \|M^k\|^{1/k} = 0 = \rho(M)$.
Else $\rho(M) > 0$, so let $0 < \epsilon < \rho(M)$ be given and put

$$M_- \overset{\text{def}}{=} \frac{1}{\rho(M) - \epsilon} M, \quad M_+ \overset{\text{def}}{=} \frac{1}{\rho(M) + \epsilon} M.$$

Then $0 < \rho(M_+) < 1 < \rho(M_-)$, so $\|M_+^k\| \to 0$ while $\|M_-^k\| \to \infty$ as $k \to \infty$. Hence for all sufficiently large k,

$$\frac{\|M_+^k\|}{(\rho(M) + \epsilon)^k} = \|M_+^k\| < 1 < \|M_-^k\| = \frac{\|M_-^k\|}{(\rho(M) - \epsilon)^k},$$

so $\rho(M) - \epsilon < \|M^k\|^{1/k} < \rho(M) + \epsilon$. \qed
Fixed Point Existence

Theorem (Brouwer)

If \(f : X \to X \) is a continuous endomorphism on compact convex \(X \subset \mathbb{C}^n \), then \(f \) has a fixed point: \((\exists x \in X) f(x) = x \).

Application: for invertible \(n \times n \) matrix \(M \) with \(\| M \|_{\text{op}} \leq 1 \), the map

\[
x \mapsto Mx
\]

is defined and continuous from the closed unit ball in \(\mathbb{C}^n \) into itself, and thus has a fixed point.

Problem: avoid the trivial fixed point \(M0 = 0 \).
Lemma
If M has a maximal eigenvalue $\lambda = r$, with $|\lambda| < r$ for all its other eigenvalues, then the iteration $x_{k+1} = \frac{1}{r}Mx_k$ starting from almost any x_0 (that is, any x_0 with a nonzero projection into the r-eigenspace) will converge to an r-eigenvector.

Proof.
Write $x_0 = v \oplus u$ with $v \neq 0$ in r-eigenspace X_r and $u \in X_r^\perp$. Then $(\frac{1}{r}M)^kv = v$ while $(\frac{1}{r}M)^ku \to 0$ as $k \to \infty$.

Remark. The same holds for iteration with renormalization:

$$x_{k+1} = \frac{1}{\|Mx_k\|}Mx_k, \quad k = 0, 1, 2, \ldots$$

For almost every x_0, $\lim_{k \to \infty} x_k$ is a unit r-eigenvector.
Perron-Frobenius I

Theorem

For any positive $n \times n$ matrix M with spectral radius $r = \rho(M)$:

1. $0 < \min_{i} \sum_{j} M(i, j) \leq r \leq \max_{i} \sum_{j} M(i, j)$,

2. r is an eigenvalue for M,

3. every other eigenvalue λ of M satisfies $|\lambda| < r$,

4. there exists a positive r-eigenvector \mathbf{v} of M, namely $\mathbf{v} = (v_1, \ldots, v_n)$ with $(\forall i) v_i > 0$,

5. eigenvalue r has multiplicity 1, and

6. every other eigenvector with all positive coordinates is a positive scalar multiple of \mathbf{v}.
PFI.1: Lower Bound for Spectral Radius

If M is positive, then M^k is positive for all $k > 0$, so

$$\mu_k \overset{\text{def}}{=} \min_{i} \sum_{j} M^k(i, j) > 0, \quad k = 1, 2, \ldots$$

Let $1 = (1, \ldots, 1)$ and compute

$$\|M^k\|_{\infty} \geq \left| \frac{M^k 1}{\|1\|} \right| = \frac{1}{\sqrt{n}} \left[\sum_{i} \left[\sum_{j} M^k(i, j) \right]^{2} \right] \geq \mu_k$$

But $\mu_{k+1} \geq \mu_1 \mu_k$ (Exercise!), so $\mu_k \geq \mu_1^k$. Now apply Gel’fand:

$$\rho(M) = \lim_{k \to \infty} \|M^k\|_{\infty}^{1/k} \geq \lim_{k \to \infty} (\mu_k)^{1/k} \geq \lim_{k \to \infty} (\mu_1^k)^{1/k} \geq \mu_1,$$

which means that $\rho(M) \geq \min_{i} \sum_{j} M(i, j) > 0$.
For positive M, put

$$\gamma_k \overset{\text{def}}{=} \max_i \sum_j M^k(i,j) = \|M^k\|_\infty.$$

By the submultiplicativity of the matrix norm $\| \cdot \|_\infty$,

$$\gamma_{k+1} = \|M^{k+1}\|_\infty \leq \|M\|_\infty \|M^k\|_\infty = \gamma_1 \gamma_k,$$

so $\gamma_k \leq \gamma_1^k$ for all k. Apply the Gel’fand formula with this norm,

$$\rho(M) = \lim_{k \to \infty} \|M^k\|_\infty^{1/k} \leq \lim_{k \to \infty} (\gamma_k)^{1/k} \leq \lim_{k \to \infty} (\gamma_1^k)^{1/k} = \gamma_1.$$

Conclude that

$$\rho(M) \leq \max_i \sum_j M(i,j).$$
Gershgorin’s Theorem

The bounds on $\rho(M)$ are a special case of:

Theorem

Suppose M is an $n \times n$ matrix over \mathbb{C}. For $i = 1, \ldots, n$, define the Gershgorin disc $G_i \subset \mathbb{C}$ by

\[G_i \overset{\text{def}}{=} \left\{ z \in \mathbb{C} : |z - M(i, i)| \leq \sum_{j \neq i} |M(i, j)| \right\}. \]

Then every eigenvalue of M lies in $\bigcup_i G_i$.

Proof.

This relatively simple proof is left as an exercise. Thus, the largest eigenvalue $z = \rho(M)$ of positive M must satisfy $z \leq M(i, i) + \sum_{j \neq i} M(i, j)$ for some i, so $z \leq \max_i \sum_j M(i, j)$.
Proof of PFI.2 and PFI.3

Assume that $\rho(M) = 1$, else use $M/\rho(M)$. Thus for eigenvalues λ:

\[
(\forall \lambda) |\lambda| \leq 1 \quad (\exists \lambda) |\lambda| = 1.
\]

Suppose $|\lambda| = 1$ but $\lambda \neq 1$. Then ($\exists m \in \mathbb{Z}^+ \text{Re} \lambda^m < 0$).

Let $\epsilon = \frac{1}{2} \min_j M^m(j,j) > 0$. Then $T \overset{\text{def}}{=} M^m - \epsilon l$ is a positive matrix, with an eigenvalue $\lambda^m - \epsilon$, so $\rho(T) \geq |\lambda^m - \epsilon| > 1$. Now

\[
(\forall i,j) 0 < T(i,j) \leq M^m(i,j) \implies (\forall i,j,k) 0 < T^k(i,j) \leq M^{mk}(i,j).
\]

Thus ($\forall k$) $\|T^k\|_F \leq \|M^{mk}\|_F$. Apply Gel’fand with $\|\cdot\|_F$ to get

\[
\rho(T) \leq \rho(M^m) = \rho(M)^m = 1.
\]

Contradiction! so $\lambda = 1$ is the unique eigenvalue with $|\lambda| = 1$.
Some positive x_0 near 1 will have a nonzero component in the r-eigenspace. The power method converges from that x_0:

$$x_{k+1} = \frac{1}{\|Mx_k\|}Mx_k, \quad k = 0, 1, 2, \ldots$$

For all k, x_k has all positive coordinates, so the r-eigenvector $v = \lim_{k \to \infty} x_k$ has nonnegative coordinates v_1, \ldots, v_n. But if $v_i = 0$ for some i, then $Mv = rv$ implies

$$0 = v_i = \frac{1}{r} \sum_{j=1}^{n} M(i, j)v_j, \quad \implies (\forall j)v_j = 0,$$

since $(\forall j)M(i, j) > 0$. This is a contradiction since $\|v\| = r > 0$ by construction. Conclude that v is a positive eigenvector.
Let v be a positive r-eigenvector.

Suppose that u is another r-eigenvector. Without loss, some component of u is positive, else use $-u$.

For $\alpha > 0$, let $w \overset{\text{def}}{=} v - \alpha u$. Any $w \neq 0$ is an r-eigenvector.

There is a maximal positive α for which w is nonnegative. By maximality, some component of w must be 0.

However, any nonnegative r-eigenvector must in fact be positive by PFI.4. Hence $w = 0$, so $u = \frac{1}{\alpha} v$.

Conclude that there cannot be another linearly independent r-eigenvector.
Let $\mathbf{v} = (v_1, \ldots, v_n)$ be the r-eigenvector with all positive coordinates from PFI.5, so $(\forall i) v_i > 0$.

Let $\mathbf{x} = (x_1, \ldots, x_n)$ be another positive eigenvector, so $(\forall i) x_i > 0$. Then \mathbf{x} is an r-eigenvector, since $\langle \mathbf{x}, \mathbf{v} \rangle > 0$ implies that \mathbf{x} cannot be in the (orthogonal) eigenspace of any other eigenvalue of M.

Since the r-eigenspace is one-dimensional, $\mathbf{x} = c \mathbf{v}$. Thus $(\forall i) x_i = cv_i$. This is possible if and only if $c > 0$.

Conclude that $\mathbf{x} = c \mathbf{v}$ is another positive r-eigenvector if and only if $c > 0$.

This completes the proof of Perron-frobenius I.
Perron-Frobenius II

Theorem
If M is a nonnegative irreducible $n \times n$ matrix with $\rho(M) = r > 0$, then all results for PFI hold with these changes:

PFII.4: there exists an eigenvector $v = (v_1, \ldots, v_n)$ of M, with eigenvalue r, such that $(\forall i)v_i \geq 0$,

PFII.6: every other eigenvector with nonnegative coordinates is a positive scalar multiple of v,

Proof.
Idea: since $N = \exp(M) - I$ is positive, apply PFI to N. But $Mv = \lambda v$ implies $Nv = [\exp(\lambda) - 1]v$. \(\square\)
Markov Matrices

Row stochastic nonnegative M:

$$(\forall i, j) \ M(i, j) \geq 0; \quad (\forall i) \ \sum_j M(i, j) = 1.$$

Say that such an M is **ergodic** if

- M is irreducible: $\exp(M) - I$ is positive, and
- M is aperiodic: $(\forall i) \ \text{period}(i) = 1$, where

$$\text{period}(i) \overset{\text{def}}{=} \gcd\{k \geq 1 : M^k(i, i) \neq 0\}.$$

Lemma

If M is ergodic, then $\lim_{k \to \infty} M^k$ exists and has constant rows \mathbf{v} satisfying $\mathbf{v}M = \mathbf{v}$.
Adjacency Matrices

Lemma
The adjacency matrix for a connected graph is irreducible.

Proof.
Form the transition matrix $T = D^{-1}A$, where A is the adjacency matrix and D is the degree matrix. This is row stochastic. Since the graph is connected, every pair of vertices i, j are connected by a path whose probability is $T^k(i, j) > 0$, where k is the path length. Therefore,

$$(\forall i, j)(\exists k) T^k(i, j) > 0, \quad \implies (\forall i, j)(\exists k) A^k(i, j) > 0.$$

This implies that $\exp(A) - I = \sum_{k \geq 1} \frac{1}{k!} A^k > 0$. □
Normalize a similarity matrix to be row stochastic.