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Abstract. The wavelet transform generalizes to produce a library of orthonormal bases of
modulated wavelet packets. Each basis comes with a fast transform; these bases are similar
to adapted windowed Fourier transforms. There is a notion of the “best basis” for a signal,
given a cost function. This paper discusses some early results in acoustic signal compression
using a simple counting cost function.

By generalizing the method of multiresolution decomposition, it is possible to construct
orthonormal wavelet packets which provide a family of orthonormal bases for L?(R). These
wavelet packets are well localized in both space and frequency. Correlating digitally sam-
pled signals with these wavelet packets and discarding small coefficients can substantially
compress the signals. The wavelet packets can be adapted to optimize fast data trans-
formation, or to facilitate signal recognition. This paper presents results of computer
experiments with the author’s signal compression algorithms on digitized speech signals.

Correlations with the entire family of orthonormal bases may be rapidly calculated
for discrete functions of RY, where N is a positive integer power of 2. The algorithm
used is based on the conjugate quadrature mirror filter method described by Mallat [M],
with generalizations described in the Appendix. In the generalized case, it has the same
complexity as the discrete “fast” Fourier transform. This complexity is O(N log, N) to
obtain more than 2 orthonormal bases all at once. These bases are especially well suited
for signal processing, and the availability of choices suggests adaptive algorithms which
optimize for a given problem. Orthogonality insures that signal analysis and resynthesis

are computationally equivalent.
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If the basis vectors of the family are arranged in an array of dimensions N columns by
n = log, N rows, then any admissible subset of the entries will be an orthonormal basis of

R". Roughly speaking, an admissible subset is a choice of elements with 3 properties:

(1) every column contains exactly one element,
(2) elements in a single row appear in contiguous blocks of 2* elements, where 0 < k < n
is an integer, and

(3) row blocks begin an integer multiple of their length from the left edge of the array.

This notion will be made precise in the Appendix.

The redundancy of the bases has benefits for both numerical algorithms and signal
processing. For example, it is possible to choose the basis (i.e., the admissible subset of
the array) which has the fewest large coefficients. The choice algorithm, as described in the
appendix, can be implemented in O(N log, N) steps. The far smaller number of surviving
coefficients (after thresholding) reduces the complexity of subsequent processing. Such
an algorithm may also be used to compress audio signals. Applications to 2-dimensional

signal compression may be found in [CMQW].

Reconstructing the signal corresponding to an array of zeros with a single 1 gives a
particular tone or tone-burst, corresponding to a note produced by a musical instrument.
Graphs of individual wave packets bear a striking resemblance to bursts of sound, sug-
gesting that these bases are well suited to representing acoustic signals. This provides a

method for digital music synthesis.

Another example is the recognition of acoustic signatures. By displaying an array of grey
scales proportional to the absolute values of the corresponding coefficients, one obtains a
picture of the signal together with a family of Fourier-like transformations. Nicolas [IN]
has build an expert system which can read this picture and detect characteristic features

of a particular signal with high probability.

Perhaps the most important application is the rapid transformation of digital data.
The same wavelet packet bases that compress signals will conjugate a large class of (dis-

cretized) operators into sparse or even band-diagonal form. Thus data in compressed form
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is already prepared for fast and useful numerical algorithms. Already wavelet transform
methods have produced fast numerical algorithms for matrix inversion and calculation
of potentials [BCR|. Such a marriage of compression and transformation could have far

reaching technical and economic consequences.

Synthesis of discrete wavelets and wavelet packets. For a longer exposition on the
construction of wavelets, see Daubechies [D]. The starting point is a summable sequence
h = {ht} € I*(R) with the following three properties:

(1) Y hor =3, hogs1 = 2712

(2) For all integers [ # 0, >, hiphiryo = 0, and

(3) There exists € > 0 such that ), |hg||k|® < oco.

Finite sequences obviously satisfy (3). Complete characterizations of the finite sequences
{hr}-m<k<m which satisfy conditions (1) and (2) may be seen in [D]. Call such a finite
sequence h a summing filter, and define the associated differencing filter g = {gr} by
gr = (=1)*h_jy1. The pair (h,g) are called conjugate mirror filters of length r = 2M.
They may be used to construct orthonormal bases in two ways.

First, there is a continuous, compactly supported real-valued function ¢ on R solving

the functional equation
(1) d(x) =22 hiop(2x — k).
k

This function may be approximated very efficiently by iteration. Define an associated

function 9 by
@) (@) =223 ge(2e — k).
k

This function is also compactly supported—in fact, its support is contained in an interval
of length r. Its dyadic dilates and integer translates generate a Hilbert basis for L?(R.).
Namely, writing 1/, for the function 9, (z) = 279/2¢)(2 7z — k), there is the following

result of Daubechies and Meyer:



THEOREM 1. The collection {1k, j,k € Z} is a complete orthonormal basis for L*(R). I

Second, conjugate mirror filters provide a basis for [*(N), where N shall be shorthand
for the finite set {1,2,...,2"}. To construct this, introduce the summing and differencing

operators H and G on [?(Z), respectively defined by
(3) H f(i) = Z hi—2if (k) Gf(i) = ng—m‘f(k)~
k k

These two operators have adjoints H* and G* defined by

(3

(4) H" f(k) = Z hi—2i f (1), G f(k) = ng—%f(i)-

The original 3 conditions imposed upon h guarantee that H*H + G*G = I, that HG* = 0,

and that [? = H*I?> ® G*I2. Repeating this last decomposition n times yields

\
=

n

(5) P=g) (HYVGI*q (H )"

=
Il
=

Now, it is possible to define H, G : [>(2™) — [2(2™ 1), and H*,G* : [2(2™ 1) — [2(2™).
First replace h, g with periodized filters A, G, defined by
h(R)= > RO, Gmk) = Y g().
1=k (mod 2™) 1=k (mod 2™)

Then restrict the ranges of 7 and & in Eqs.(3,4) as follows:

(6) Hf(i) =Y hm(k=20)f(k),  Gf(i)=>>_ Gm(k—2i)f(k).
k=1 k=1

(7) H f(k) = Y hn(k=20)f(i),  G"f(k) =) Gm(k— 20)f(5).

i=1 =1
For each m > 0, the periodized filters h,,, Jm satisfy the same orthogonality conditions as
h, g, even though they differ (in general) at different levels m. Hence, these operators H, G
satisfy the relations
(8)
2™ = H (2™ Hea (2™ 1), HG*=GH*=0, and H'H+G*'G = I,

4



where I,,, is shorthand for the identity operator on %(2™).

Counting dimensions in this finite-dimensional case shows that Eq.(5) may be rewritten

(9)  *(N)=H*I*(N/2) @ G*I*(N/2) =& nz:(H*)jG*lQ(N/Qj“) ® (H*)"1%(1).

Taking the standard bases within each of the direct summands gives the so-called wavelet
basis for the finite-dimensional space [?(N). Computing the expansion of a vector in this
basis may be done recursively in O(Nr) operations, where r is the length of the filters h
and g, i.e., the cost of applying H or G.

But of course, each of the direct summands [?(N/27) may itself be expanded in the
wavelet basis, and its summands recursively expanded still further, until all the summands
are 1-dimensional. This yields the formula

(10) =@ Z w0 Fo @l (1),  where Fe = { Z E: . (1)

and €;(7) is the ith d1g1t in the binary expansion of j. Taking one coefficient for each of the
1-dimensional summands in Eq.(10) gives the lowest-level wavelet packet basis expansion of
a vector. These functions are related to the classical Walsh functions, which are obtained
as above by taking filters of length 2. One obtains the bit-reversed and sequency-ordered
Walsh function bases by respectively composing bit-reversal or Gray-encoding with the
function e. Longer filters give smooth generalizations of Walsh functions, which are totally
new objects.

Individual wavelet packets may be constructed as follows. Fix N = 2" and define the

Jth wavelet packet w? = w; € I2(N) from Eq.(10) above, namely, by

(11) wj = FZ Gy g L.

This is a unit vector in [2(N) by an easy induction argument.

LEMMA 2. (v,w;) = F¢, (). Fe,(j)v, where F, is the adjoint of F}.

PROOF: Starting from Eq.(11), the operators F may be transposed onto v, giving
(v,wj) = (v, F 5y - Fo ) D) = Fay - Feuy vs 1)-
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But the right-hand side is an inner product in R!. I

Other wavelet packets. The periodized lowest-level wavelet packet w7 is not localized.
It stretches throughout the entire index interval {0,1,...,2"—1}, as is easily shown by
induction on the steps of the reconstruction algorithm. Since the filter length is at least
2, the number of non-zero coefficients at least doubles with each application of F*. But
there are n filter applications. This property distinguishes lowest-level wavelet packets
from wavelets, which are supported in subintervals of length proportional to their scale.
Since it contains only frequency, no position information, the inner product of a vector
with w?,j=0,1,..., N—1 is analogous to the Fourier transform. The lowest-level wavelet
packets themselves are the analogs of pure tones.

The reconstruction algorithm may be generalized to provide wavelet packets supported

in subintervals. For m = 1,2,...,n, define

(12) w™

_ % * R
i =G T () €

where e; is the unit vector in R2"™" which has a 1 in the j position and zeros everywhere

9

else, with j = j mod 2"~™. In other words, €x(j) = ex(j) for k = 1,2,...,n—m. Let wj;

be the standard basis vector in R which has a 1 in the jth position and zeros elsewhere.
The component of v € R in the w{* direction is given by the j coefficient in the vector

F. .. F, (jyv. The proof is nearly identical with that of Lemma 2:

n7m+1(j) *

LEMMA 3. (v, w;”) = <6j, F€n7m+1(j) . Fen(j) v). 1

The width of the support of wj* is at most 2™ + (r — 2)(2™ — 1), where r is the length
of the filters h,g. For small m and r, this can be much smaller than 2. Thus inner
products with wi",j = 0,1,..., N—1 contain some position information, like windowed
Fourier transforms. The narrower wavelet packets themselves correspond to tonebursts.

Write w™ for the orthonormal basis {w;” :j=0,1,..., N—1}. Expanding a vector into

1 n

w"™ generates all the expansions into w-,...,w" simultaneously, suggesting the following

picture. Denote by w® the standard basis in R". A vector in the w” basis may be expanded

1

in the log, N wavelet packet bases w", ..., w™ with the results placed row-by-row into a
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rectangular array. Each location in this array corresponds to a wavelet packet orthogonal
to other wavelet packets in that row, of support width increasing with row number. The
array thus contains 1 + log, N representations of a vector, including analogs of windowed

Walsh (or Fourier) transforms at all dyadic window-widths.

Likewise, if row m has a single 1 in column j with all its other entries 0, the rest of the

array is determined, and the standard representation of wy" will appear in row 0.

Any wavelet packet is extensible to a smooth periodic function, of the same degree of
smoothness as the solution ¢ of the functional equation (1). (In the finite-dimensional
case, numerical smoothness of degree k will mean rapid decrease of the first k successive

differences.)

Functions underlying the discrete algorithm. Wavelet packet coefficients can be
interpreted as inner products of an underlying function of R with a family of smooth
orthonormal elements of L?(R). Let ¢, 1 be the continuous functions in L?(R) defined by
equations (1) and (2), and suppose that S € L?(R) is a function to be approximated with
one value in each subinterval of length §. One possibility is to calculate an approximate
value s(k) =6~ [ S(2)p(0 'x — k) dx at each integer k, relying on the good localization
of the bump function ¢. In fact, if we arrange that higher moments of ¢ vanish, this

approximation is very good for smooth functions S:

LEMMA 4. If [ga¢(z)dez = 0 for all 0 < d < D, and S € CP(R), then for x near k,
S(z) = s(k) + O(3P).

Proor: Expand S in its Taylor series about k. The inner product ¢ evaluates S at x = k

and kills all lower order terms than D. |

It can be arranged that any fixed number of moments of ¢ vanish. The number of
vanishing moments is at most half the filter length, however, so longer finite filters must

be used.

Now define a family of wave functions W,, € L?(R), n =0, 1,..., recursively from ¢ and
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¥ by the following: Wy (z) = ¢(z), Wi(z) = ¢(x), and
(13) Won(z) =22 " hWn (2w — k), Wonga(a) =2 g, Wa(2z — k).
k k

These are orthogonal transformations in L?, so that W,, is a unit vector for every n. From
these definitions, we see that any sequence s that approximates a function S will have as
its wave packet coefficients the inner products of S with the dyadic dilates and integer
translates of W,, for various n. The following formula, noted by Coifman and Meyer,

describes this correspondence:

ProprosITION 5. For any integer k, and nonnegative integers m, n, the relationship be-

tween wavelet packet coefficients and underlying inner products is given by the formula:
Q_m/Q / S(.”L‘)Wn(Q_milf — ]{3) dx = <€k; Fq(n) - Fem(n)8>,
R

where €;(n) is the jth binary digit of n, padded with leading zeros if necessary, and ey, is

the unit sequence in 1> which has a single 1 in the kth position and zeros elsewhere.

PROOF: The inner product with e, merely picks out one coefficient. The rest of the
formula may be demonstrated by considering the effect of a filter convolution on s. But if

o = o(k) is a partial result, we have:

R

F.o(k) =212 / S(z) (Z fe(l—Qk)Wp(qu—l)> dx

> f (W, (2 %2 + 2k — l)) dx

27V 2W,y, (2797 e — k) dz,  ife=0,
27V 2Wop1 (279 2 — k) dw, if e = 1.

B { 279/2 [ S(x

2792 [ S(z
Induction on g up to m completes the proof. I

Wavelets correspond ton =1, m=0,1,2,..., and k € Z. Wave packets correspond to
a fixed level m=1>0,n=0,1,2,..., and k € Z.
The periodized case can be interpreted similarly. One can easily produced a series of

graphs depicting approximations of these functions W,,. Filters with regular limits ¢,
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produce a library of wavelet packets with a remarkable resemblance to sound bursts or
smoothly modulated notes. Expansion in the wavelet packet basis correlates a signal to
these notes, and their appearance suggests that the library is suitable for acoustic signal

analysis. Some examples of these graphs may be seen below:
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Figure 1. Periodized wavelet packets



Wavelet packets as musical tones and tonebursts. It is amusing to listen to wavelet
packets. They approximate continuous periodic functions on R, and can be played back
as tones through a digital-to-analog converter and loudspeaker. The curious reader who
wishes to hear these tones may obtain from the author a recording of a few examples.

The speed of the wavelet packet algorithm suggests that wavelet packet generators could
be useful in sound synthesis. A single wavelet packet generator may replace a large number
of oscillators. Through experimentation, a musician could determine combinations of wave
packets that produce especially interesting sounds. Having an orthonormal basis offers the
musician the widest possible range of sounds.

Also, consider approximating the sound of a musical instrument. A sample of the notes
produced by the instrument may be decomposed into its wavelet packet coefficients, using
a suitable filter length. Reproducing the note requires reloading those coefficients into a
wavelet packet generator and playing back the result. Properties such as attack and decay
may be controlled separately (e.g., with envelope generators), or by using longer wavelet
packets and encoding those properties as well into each note. Any of these processes may
be controlled in real time, for example by a keyboard.

Of course, the musical instrument could just as well be a human voice, and the notes
words or phonemes.

Conjugate mirror filters of length greater than 2 result in numerically smooth wavelet
packets, which are presumably well suited to representing digitally-sampled smooth analog
signals. Results with the two sample signals studied in the next section support this belief:
longer filters result in less measurable and audible distortion.

Wavelet packet coefficients, like wavelet coefficients, are mostly very small for digital
samples of smooth signals. The differencing filters remove correlations between adjacent,
nearly identical samples. Discarding coefficients below some predetermined (or dynami-
cally determined) cutoff introduces only small errors while effecting data compression for
smooth signals. In effect, this means that a wave packet-based music synthesizer could
store many complex sounds efficiently. Similarly, a wavelet packet-based speech synthesizer

could be used to reconstruct highly compressed speech signals.
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Data compression with wavelet packets. Let F be a field, finite or infinite, let v € FN
be a vector, and consider the problem of representing v with fewer than N coefficients.
If F is finite (i.e., an alphabet), then there are numerous lossless data compression algo-
rithms that can replace v with a substitution table and symbol list, removing some of the
redundancy of information in the standard representation of v. Such algorithms rely on
searching through v for repeated strings and tabulating some fraction of them. The best
implementations (for small alphabets F') yield compression ratios between 2 and 10, i.e.,
the compressed vector is 2 to 10 times shorter than the original.

Lossless data compression is also possible with wavelet packets. If more of the wavelet
packet coefficients are small, then the entire expansion has lower entropy than the original
signal. Fewer bits need to be transmitted for the small coefficients. As a simple test of this
idea, one sample signal was compressed by Huffman coding, yielding a compression ratio
of 2. For comparison, its complete best-level wave packet expansion was compressed by
the same Huffman coding algorithm, yielding a compression ratio of 3. The reconstructed
signal was identical to the original in both cases.

Such methods lose efficiency when F' is very large or infinite, such as when it is taken to
be R. The alternative is a method that introduces some acceptable losses or distortions
in exchange for greater efficiency.

Loss or distortion introduced in reconstruction shall be defined as the root-mean-square
or [? norm of the difference between v and its approximation 9. For simplicity of com-
parison, this shall be normalized into the relative difference ||v — 0|/||v||. Distortions of
up to 5% are considered acceptable in some speech processing applications. An optimal
compression method for a speech signal is one that yields no more than 5% distortion while
maximizing the compression ratio. While it is too much to expect that a single method
will be optimal for all signals, it is not unreasonable to expect that a method which is
close to optimal for one signal is close to optimal for similar signals—similar bandwidths,
dynamic ranges, etc.

The class of algorithms from which the optimal compression method is to be chosen will

be the following: A fixed signal of length N = 2" will be decomposed into the n wavelet
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packet bases w!

,...,w™. The entries in each row which are smaller than a predetermined
cutoff (depending only on the norm of the signal) will be set to 0. Then the admissible
subsets of the array will be searched to find that set which has the fewest nonzero coeffi-
cients. For filter length r, this algorithm takes O(rN log, N) steps: N logy N operations
to expand the signal, Nlog, N to cut off small coefficients, and 2N log, N to find the
optimal admissible subset. In addition, the compressed coefficients must have a header
appended which defines their locations within the admissible subset. Enlarging the class
of admissible subsets (which improves the compression ratio) causes this header to grow,
forcing a tradeoff.

In the extreme case where the definition of admissible is conditions (1,2,3) of the in-
troduction, the number of admissible subsets is very large. Let A, be the number of
admissible subsets for a signal of length N = 2. Then A; = 2 (the standard basis, or
{sum,difference}), and there is a recurrence relation deducible from the recursive construc-
tion of wavelet packets. Namely, the admissible subset is either w® or a choice of admissible

subsets from the wave packet expansions of GI? and HI?. This generalizes to provide the

inductive step,
(14) App1 =1+ A2,

The constant 1 quickly becomes negligible as n increases, and an obvious simplification
gives the estimate A, 1 > 22" — 9N 1In this case the header attached to each coefficient
must state which level it comes from, together with the position in that level. This requires
at least logy N +1log, logy N bits to transmit. In the appendix is a formula which evaluates
the effect of this requirement upon the compression ratio.

At the other extreme, always choosing the same admissible set—say, the lowest-level
wavelet packets w”—shortens the header to log, IV bits per coefficient.

An intermediate case is to fix a segment length N and then allow within each sgment
only complete rows w™, for 0 < m < n, as the admissible subsets. This permits some
adaptability to the signal while adding a header only log, log, N bits long to an entire

segment of coefficients, quite negligible compared to N as N — oo.
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Experiments with speech signal compression. A speaker recorded the phrase “Joe
brought a young girl” into computer memory, using a 22kHz sampling rate and a resolution
of 8 bits per sample. There was no pre-emphasis, and the analog-to-digital converter was
assumed to be reasonably linear. This resulted in a signal v containing slightly fewer than
2% samples, which was then padded at the end with dither to a length of 2'°. Hence
N = 32768 and n = 15 for this example.

This signal was then transformed into a list of single-precision floating point numbers.
For calculating the L? norm, the signal length was taken to be 1 with subinterval width
1/N.

Three kinds of compression were tried on this list of floating-point numbers. Method
1 involved expanding v in the wavelet basis, using filters of length 2, 10, and 18, cutting
off all terms less than e, and then reconstructing the signal. Hardware limitations forced
the signals to be divided into 2 segments of 16384 samples each before transforming to the
wavelet basis. Table 1 shows the results obtained with this method.

For the next two methods, the signal was divided into 8 segments of 4096 = 2!2 samples,

L. .., w'?, using filters of length 2, 10, and

and each segment expanded into the bases w
18. In method 2, each segment was reconstructed from its w'? representation after those
coefficients less than ¢ were discarded. Results using this method are presented in Table
2.

In method 3, each segment was reconstructed from its “best” representation w®, 1 < b <
12, where b was chosen for each segment to maximize the number of coefficients smaller
than e. This gave the best results, shown in Table 3.

In all three methods, the values € = 0.5, 2.0,8.0 were used, corresponding to approxi-
mately 0.6%, 2.5%, and 10% of the maximum value of the signal. This is expressed in dB
below peak in Table 4, using the formula (dB below peak)= —20log;,(¢e/Peak).

The experiment was repeated with a male speaker and a female speaker. The dynamic
range and rate of speech for the two samples were adjusted to be as similar as practicable,

so that bandwidth was the principle difference between the signals.

While it is necessary to listen to the reconstructed signals in order to judge their in-
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telligibility, some observations are possible from the estimates of errors introduced after
reconstruction. First, the distortion seems to increase linearly with compression ratio. It
becomes noticeable at a value of 5%, which occurs for compression ratios around 5 or 10.
Second, at large cutoff values the longest filter gives the least distortion and the highest
compression ratio. This is not surprising, given the smoothness of speech signals. Third,
distortions become audible as superimposed hiss, while the speaker remains recognizable.

For contrast, Table 5 lists the distortions and compressions introduced by simply squelch-
ing the original signal at the same cutoff levels used in methods 1, 2, and 3. Even allowing
large distortions, this method gives substantially smaller compression ratios.

Compression ratios are somewhat misleading out of context. In particular, if the sam-
pling rate is more than twice the signal bandwidth, then oversampling contributes redun-
dancy. Furthermore, silences between words or at the beginning and end of the phrase pad
the signal length. Any compression scheme should remove these sources of redundancy.
What remains is the Nyquist information content, and to judge a compression method it
is important to measure the distortion introduced as the signal length is compressed below
the Nyquist length. Estimating this length for the test signal above requires counting
only those samples larger than some squelch level, and determining from a sonogram the
essential bandwidth of the signal.

For the two speech samples studied, “silences” were considered to be any samples with
values —1, 0, or 1 from the range {—128,...,127}. With the maximum amplitude of the
male sample being 82, this represented a squelch level of about —38 dB. The following

output is from a computer program that counted the squelched samples:

Please name the input file of bytes: jbayg.male
Set the squelch level (1,2,...,127): 1

Squelched: 7671 of 32768, or 23.4), of signal. (True length 25097)

With the maximum amplitude of the female sample being 116, the squelch level repre-

sented —41 dB. Corresponding output for that signal is
Please name the input file of bytes: jbayg.female
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Set the squelch level (1,2,...,127): 1

Squelched: 7653 of 32768, or 23.4% of signal. (True length 25115)

The speech samples were produced by subjects intent on speaking at the same rate.
Higher squelch levels result in diverging “True lengths,” providing some justification for
the rather arbitrary choice of 1.

Bandwidth determinations are less precise. One method is to find a frequency f such
that 1 — € of the signal energy, averaged over time, is at frequencies below f. It then
remains to determine e. Under the assumption that 5% rms errors are acceptable, set
€ = 0.05. Then the bandwidth for the male sample is 5.5 kHz, while for the female sample
it is 7.5 kHz. Thus, the male’s speech is oversampled by a factor of 2, while the female’s
is oversampled by a factor of 1.5.

Removing these redundancies would result in signals of Nyquist length. These are tab-

ulated below:

SIGNAL BANDWIDTH NYQUIST LENGTH COMPRESSION
Male 5.5 kHz 12549 (38%) 2.6
Female 7.5 kHz 16743 (51%) 2.0

Only compression ratios greater than the compression to the Nyquist length will be
independent of the sampling method. The absolute compression ratio divided by the
Nyquist compression will be called compression below the Nyquist length or the tnvartant
compression ratio. For confirmation of the validity of this estimate, notice that long filters
and negligible cutoffs result in compression to this Nyquist length, regardless of method.

Whenever the invariant compression ratio exceeds 1, there will be distortion. This
distortion might be acceptable if it is small, or if the essential features of the signal are
still intelligible. In fact, all of the reconstructed compressed signals retained recognizability
as well as intelligibility: the speakers’ friends could easily identify the speakers. Other
compression methods, which exploit specific features of human speech to obtain much

higher compression ratios, will be considered in a subsequent article.

15



SIGNAL FILTER CUTOFF (dB) COMPRESSION INv. COMPRESSION Agys (%)

Male 2 44 14 0.5 0.0
32 2.7 1.0 4.7

20 7.9 3.0 14

10 44 2.5 1.0 0.7

32 6.3 2.4 4.0

20 13.9 5.3 9.4

18 44 2.6 1.0 0.7

32 6.7 2.6 4.0

20 14.3 5.5 9.1

Female 2 47 1.3 0.7 0.1
35 2.1 1.1 3.2

23 5.2 2.6 12

10 47 2.1 1.1 0.4

35 4.3 2.1 3.0

23 8.7 4.3 8.0

18 47 2.2 1.1 0.9

35 4.6 2.3 2.9

23 8.9 4.5 7.5

Table 1: Discard small wavelet components.

16




SIGNAL FILTER CUTOFF (dB) COMPRESSION INv. COMPRESSION Agys (%)

Male 2 44 1.4 0.5 0.4
32 2.8 1.1 5.0

20 7.2 2.8 15

10 44 2.3 0.9 0.7

32 5.8 2.2 4.1

20 14.0 5.4 10

18 44 24 0.9 0.7

32 6.1 2.3 4.0

20 15.3 5.9 10

Female 2 47 1.3 0.7 0.3
35 2.0 1.0 3.5

23 4.6 2.3 12

10 47 2.0 1.0 0.4

35 4.0 2.0 3.0

23 8.9 4.5 8.6

18 47 2.1 1.1 0.5

35 4.4 2.2 3.0

23 9.7 4.9 8.2

Table 2: Discard small lowest-level wavelet packet components.
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SIGNAL FILTER CUTOFF (dB) COMPRESSION INv. COMPRESSION Agys (%)

Male 2 44 1.7 0.7 1.2
32 3.3 1.3 4.9

20 8.8 3.4 14

10 44 2.6 1.0 0.8

32 6.8 2.6 4.0

20 16.6 6.4 9.7

18 44 2.7 1.0 0.8

32 7.3 2.8 4.0

20 17.9 6.9 9.8

Female 2 47 1.5 0.7 0.7
35 24 1.2 3.4

23 5.6 2.8 11

10 47 2.3 1.1 0.5

35 5.0 2.5 3.0

23 10.8 5.4 8.0

18 47 24 1.2 0.5

35 5.5 2.7 2.9

23 12.4 6.2 7.7

Table 3: Choose best-level wavelet packets.
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SIGNAL PEAK ¢ dB BELOW PEAK
Male 82 0.5 44
2.0 32
8.0 20
Female 116 0.5 47
2.0 35
8.0 23

Table 4: Relative attenuation of certain cutoffs.

SIGNAL CuUTOFF (dB) COMPRESSION INv. COMPRESSION Agys (%)

Male 44 1.1 0.4 0.0
32 1.3 0.5 2.4

20 2.4 0.9 17

Female 47 1.1 0.5 0.0
35 1.3 0.7 1.7

23 2.0 1.0 11

Table 5: Squelch small samples.
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APPENDIX A: FAST ALGORITHMS FOR SIGNAL PROCESSING

All of the algorithms mentioned above and used to perform the experiments have been
coded by the author in the C programming language. The experiments were performed on
a Sun 3 minicomputer at the Yale University Department of Mathematics, using samples

recorded on a Macintosh II personal computer.

Transformation to wavelet bases and back. The fast wavelet transformation and its
inverse are described in a preprint of Beylkin, Coifman, and Rokhlin [BCR]. There they
discuss fast multiplication by singular integral operators of the vectors thus encoded. A fu-
ture paper will explore the applications of such operators to problems of noise suppression,
speech acceleration, and speech recognition.

Note from Tables 1 and 3 that compression with wavelet packets is 25% to 38% tighter
than compression with wavelets. This advantage may be offset by the greater computation

time required.

Transformation to wavelet packet bases and back. Efficiently transforming to pe-

riodized wavelet packets requires organizing the applications of F, into a pyramid scheme.

N—1 0.0:

Suppose v = v¥ = Zj —o0 Vj w] is a vector in [?(N) written in the standard basis w®. Then

v = Zj\] 01 viw; == Z ™ are the various representations of v in the n wavelet
packet bases as v™ = (v{" ,...,UN_l), m = 1,2,...,n. It will be shown that going from

m+1

v™ to v requires Nr operations, where r is the filter length. Thus filling the entire

rectangle v¥ — v! — ... — v" costs nr N operations.

But {0,1,...,2"—1} has a “dyadic decomposition” into subsets of 2™ consecutive in-
dices, m = 0,1,...,n. Denote these subsets by A" = {42 i2"+1,...,i2m4+2™—1}, for
i=0,1,...,2"7"—1. Call m the scale of the interval. Clearly AT"NA”T = () if i # j. Each
dyadic interval of scale m contains two disjoint (left and right) daughters of scale m—1,
and is contained in a unique parent of scale m~+1. In fact, Agfl U Ag;f& C A" C ATZ/+21J’
where as usual |z] denotes the greatest integer less than or equal to x.

The convolutions H, G can be arranged so that their images are indexed by the daughters

of the domain interval. Denote by V,*, m = 0,1,...,n, ¢« = 0,1,...,2" ™—1, the 2™-
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dimensional subspaces of R spanned by the standard basis vectors {e; : j € A™}. Then

RY = Zflgm‘l V™, and composing with the appropriate injections gives, for each m,

H:V™ - Vvt fori=0,1,...,2" ™1,

G: V"™ — vl fori=0,1,...,2" ™—1.
Applying H, G successively to V", Vi, ... produces N new coordinates. Each operator

requires rN/2 multiplications, giving a total of 7N operations for this step. It remains

2

to show that these steps successively develop the coefficients v',v?,...,v™, but this is a

straightforward induction. By Lemma 3,

m-+1 m| Am
Uj + :<€j7 Fﬁnfm(j)FEnfmﬁ»l(j) ttt FEn(J) v) = <ej7 anfm(_?) v |Aj >7

where j € AT determines j uniquely,

(H Um|A}”)j, if j is in the left daughter of AT,
L (Gumay);,

i if j is in the right daughter of AJ".

Now let m range from 0 to n — 1.
To reconstruct vectors from their wavelet packet representations, this pyramid scheme

must be reversed. Composing with the appropriate injections gives

H Vv, for i =0,1,...,2" ™1,

G* Vit — v, fori=0,1,...,2" ™—1.

Since the ranges of H* and G* are orthogonal by Eq.(8), as are the subspaces V™ i =

0,...,2"~™—1, the previous wavelet packet coefficients can be recursively computed:

0P = (H 07 |AT ) + GoAR )

where 7 = j mod 2™ and L(j), R(j) index the left and right daughters of the unique

dyadic subset at level m — 1 which contains j.
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Each adjoint filter convolution requires 2™ /2 multiplications on each of the 2"~ sub-
spaces V", plus the results must be added at the end. The operation count is therefore
O(rN). Letting m range from mg to 0 rebuilds the signal from any complete level mq of

coefficients.

It remains to show that any admissible subset of coefficients suffices to rebuild a complete
level. The most general admissible subsets considered here are those of the next section,
namely the disjoint dyadic covers. But if any member of the admissible subset is on the
bottom level, it is there together with all the other members of its scale-n dyadic subset,
and also with its twin sister on that level. The algorithm reconstructs each parent from its
two daughters, which may then be discarded from the bottom, leaving another admissible
subset with fewer levels. Clearly, the operation count to reconstruct some of the parents
is at most the operation count to reconstruct all of them, or O(rN). By induction on the
number of levels, the algorithm after at most n steps yields an admissible subset on level
0, i.e., the original signal. The total operation count is O(rN log, V), since there are at

most n = logy IV levels.

Searching for optimal admissible subsets. Suppose that a vector v € R" has been
expanded into all wave packet bases, with the coordinate vectors v°,...,v" forming rows
in a rectangular array. An admissible subset ¥ of this array, as defined in the introduc-
tion, corresponds to any disjoint cover of {0,1,..., N—1} by the dyadic subsets AT m =
0,1,...,n,5=0,1,...,20—m+t1L

The correspondence is given by: wj" is part of the basis <= AT € ¥, where j € AT
determines j uniquely.

An optimal basis for a given vector v and threshold € is an admissible subset for which
as many indexed coordinates are smaller than € (in absolute value) as for any other. There
are more than 2% admissible subsets, but the optimal basis may be found in O(N log, N)
operations via the following algorithm.

For simplicity of description, suppose that the array to be searched contains only “ones”

(large entries) and “zeros” (entries smaller than the threshold). Finding an optimal basis
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means finding an admissible subset with the maximal number of zeros, or equivalently the
minimal number of 1’s. This search may be implemented recursively, and its properties
proved by induction.

Consider a pair of dyadic subintervals A§; and A%, at level k, and suppose that each
has been assigned the cost of “ones” present in the most efficient wavelet packet subbasis
of itself. The sum of these costs may be compared to that of the joint parent Af‘l. If
the parent is cheaper, it is marked “kept” and is assigned its own cost. If the two children
sum to a lower cost, then this sum is assigned to the parent but the parent is not marked.

To start the induction, we mark as “kept” all the children at the bottom level n, and
assign each of them their own cost in “ones.” The induction on k procedes until £ = 0. At
each step, the chosen subset below each parent is the disjoint dyadic cover of that parent
interval which indexes the maximal number of zeros. The union of these over all parents
in that row is always an admissible subset. At the last step, when there is only one parent
A9, the chosen subset will be an optimal basis for the original signal. Of course, it is not
necessarily unique.

Advancing from row m to m—1 requires counting zeros among N numbers for size, in
groups of 2™, then comparing these counts against adjacent sums from a table of 2N /2™
previous counts. Altogether, advancing one step takes O(NN) operations. There are n =
log, N steps, resulting in the O(N log, N) complexity.

The topmost “kept” intervals in the marked tree constitute the best basis. They are
exactly those intervals which are better than any combination of their descendents, but
which have no better ancestors. These “best” intervals can be found by a depth-first search
whose complexity is O(INV), the size of the tree of dyadic subintervals down to level log, V.

To estimate the storage requirements of this algorithm, note that passing from step m
to step m—1 requires a table of 2N/2™ integers from the set 0,1,...,2™ 1, which takes N
bits of space. This may be reused. Recording the current best admissible subset at each
row may be done with 2V bits. Order the family of 2V dyadic subintervals in any manner,
labeling the result {A(k),k = 1,2,...,2N — 1}. Let D be the unique integer between 0

and 22V — 1 with the property that e,(D) = 1 <= A(k) is a maximal subinterval of
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the admissible subset. Otherwise, put ex(D) = 0. D is constructed during the search, and
if the dyadic subsets are correctly ordered, the storage requirements for the fraction of D
determined at step m are N + N/2+ --- 4+ N/2™. After the last step, D is equivalent to
an optimal basis.

There are more efficient ways of coding the basis description, of course, for example by

using standard lossless compression methods to eliminate repetition.

Transmission of compressed signals. After expansion into wavelet or wavelet packet
coefficients and compression by discarding the small ones, it is necessary to transmit the
surviving values as well as their positions in the dyadic cover. Suppose that the signal
consists of N samples each b bits long, thus requiring Nb bits of storage. When transformed
into the optimal basis, say that only N, of the coefficients exceed the cutoff €. Since no
cheating is allowed, the coefficients can only contain b bits each. Specifying their positions
in an N by logy N array takes log, N + log,log, N bits, or equivalently the level and
position within that level of the coefficient. This adds up to N¢(b + log, N + log, logy, N)

bits. The compression ratio of the transmission method is then

N, log, N + log, log, N
,OZFX(1+ &2 ng &2 )

The first factor is the compression ratio computed above. The second factor may be
controlled by breaking up the signal into segments of approximately the same length as

the dynamic range 2°.
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