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ABSTRACT. We use constructive methods to investigate the spectral theory of the Benjamin Ono
equation. Since the linearization series used previously is singular, we replace it with an improved series
obtained by finite-rank renormalization. This introduces additional scattering data, which are shown
to be dependent upon a single function, though not the usual one. We then prove the continuity of the
direct and inverse scattering transforms defined by the improved series for small complex potentials. For
all such potentials, the eigenvalues of the spectral problem cannot accumulate at 0. Rapidly decaying
potentials have regular scattering data, prohibiting rapidly decaying solitons. In the selfadjoint case
(real potentials), we obtain explicit cancellation of certain singularities. This leads to an alternate
existence proof for the Cauchy problem for the equation. It also proves existence and gives estimates
for some previously formal invariant quantities associated to the Benjamin—Ono hierarchy.

INTRODUCTION

This article investigates the direct and inverse scattering transforms for the Benjamin—Ono (BO)
equation of hydrodynamics, which has attracted attention in recent years because of its remarkable
algebraic properties. We will concern ourselves with the somewhat complicated analysis necessary
for the rigorous interpretation of these properties. Our work extends results on the renormalization
of singular integral equations, and provides constructive methods for the spectral theory of such
equations.

Benjamin [Benj| and Ono [O] originally introduced the equation

ou  Ou 8%u w1 [ f)

to describe the boundary between two immiscible fluids of differing densities. It was then discovered
that this equation could be written in Lax form, a prerequisite for the application of the method of
inverse scattering. However, the spectrum preserved under the resulting evolution proved unusually
rich and complex, since it arose from a singular operator.

Several authors have approached this equation. Fokas and Ablowitz [FA] found the inverse
spectral problem for BO. Beals and Coifman [BC1] observed its equivalence to a nonlocal @ problem.
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They remarked that this feature appears in general in higher dimensional inverse scattering, and
that the BO equation is therefore a good model to study. Matsuno [M] applied a variety of algebraic
methods to obtain, among other things, the rational solutions of the BO equation, the Backlund
transformations for the equation, and a hierarchy of nonlinear integro-differential equations related
to the same Lax pair.

Anderson and Taflin obtain in a remarkable paper [AT] a formal power series linearization of the
Benjamin—Ono equation. They observe that it can be interpreted as a distorted Fourier transform
associated to a singular integral perturbation of %%, from which they deduce a Lax pair for BO and
obtain under suitable restrictions on the “scattering data” a power series for the inverse transform.

Unfortunately, both the direct and inverse problems considered by them are not analytic for
generic potentials, leading to divergent series in general. See the remarks in the last section for a
proof of this generic non-analyticity. Various formal conserved quantities obtained involve divergent
integrals, and need to be analyzed with care. We were therefore led to study in great detail the
spectral theory and the scattering or 0 transforms attached to singular integral perturbations of
%%. The methods for handling the difficulties encountered are inherently the same as those arising
in the study of A + ¢ in R?, and were used by Tsai in his thesis [T]. To obtain convergent series
expansions, we are forced to renormalize the theory.

The main advantage of our renormalization will be to improve the behavior of the scattering
data so that perturbation methods may be used to compute the inverse transform. This result is
independent of self-adjointness. We can show that even for complex potentials, the eigenvalues of
the spectral problem cannot accumulate near 0. Thus it is not the presence of bound states that
creates the divergences at 0. Instead, we note that renormalization divides by an approximate
determinant of the spectral problem, which can get arbitrarily small even though it never vanishes
near 0.

When we improve the scattering transform, we introduce additional scattering data. These,
however, are interdependent, and we show how they may be constructed from a knowledge of a
single function. It is not the usual scattering function, and its regularity for rapidly decreasing
potentials implies the nonexistence of rapidly decreasing BO solitons. The known rational soliton
decays just slowly enough to evade this criterion.

The selfadjoint case, or assuming that ¢ is real, allows additional identities and relations which
may be used to cancel apparent singularities in the scattering data. Using these identities, we
prove that some previously formal invariant integrals within the BO hierarchy indeed converge
absolutely. The usual formal scattering data can be constructed as rational expressions in the
improved data, and the singularities become removable because poles cancel. This parametrizes
the formal data, allowing us to compute with them.

Finally, we will obtain a representation of the potential from the renormalized scattering data,
and prove that this representation is a continuous map on a small neighborhood of the appropriate
metric space of scattering data. We will then show that the various smallness assumptions fit
together, and thereby solve the short-time Cauchy problem for the Benjamin—Ono equation. Such
estimates prove continuity for the tangent maps we present relating the infinitesimal generators of
evolutions in the BO hierarchy to the generators of the linear flows of scattering data. By including
the selfadjointness assumption, we show the existence of solutions for all time from small real initial
data.

1. IMPROVED EIGENFUNCTIONS AND PRE-EIGENFUNCTIONS

The linearization series developed for the Benjamin-Ono equation by Anderson and Taflin is
obtained as the distorted Fourier transform for the operator

Ld yg)

i dx
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where
V() f = PT(aP*(f)) — P~ (¢P~(f))
and . teo
PEf) =5 [ e f(e)de.
0

To understand the spectral theory of this operator, as well as the fine behavior of this transform,
we consider the pair of functions m™, m™ satisfying the integral equations:
1 £ gietamE (¢, 5
(1.1) mE(x,2) =1+ — eram(¢,2)
2 Jo E—2
We will see later how to obtain eigenfunctions and express the distorted Fourier transform using
m*. Tt is convenient to write these equations in terms of Green’s functions:

Foo ixg
def 1 €

Denote by G the operator of convolution by G, (in the x variable). Denote by q the operator of
multiplication by the function ¢ = ¢(x). Then the integral equations in (1.1) may be written more
succinctly as:

de.

m*(z,2) =1+ GFqm*(z, 2).

If ||g||2 < €, Schwarz’ inequality and the Banach fixed-point theorem show that there is some
§ > 0 such that the Picard series for m* (-, z) will converge to a unique solution in L>*(R) for all 2
with |3z| > . As 3z — 0, however, any estimate on G will increase like |log z|, and it becomes
necessary to renormalize the series by subtracting away this singular behavior.

Let x = x(&) be any smooth, even, compactly-supported real-valued function on R which is
identically 1 in a neighborhood of ¢ = 0. Let [*(z) be the pair of functions below, one for each
sign:

by der 1[5 X(©)
(1.2) 1*(2) /0 de.

o E—z

Then [*(z) ~ —log|z| as z — 0. Define a pair of improved Green’s functions, one for each choice
of sign:

foo iw
(1.3) G (2) d:ef%/o e xE) Z_’de) d = GE(z) — I%(2).

Depending on the choice of sign, G9* and I*(z) are holomorphic on the complement of the half-line
{zeR:+2z>0}.
Observe that for any § > 0,

lim G%%(z) =0, and lim [%(z) = 0.
Z—00 Z—00
R¥E) |Sz|>6

Thus the maximum principle applies to Ggi and li(z), so they are dominated by the supremum
of their boundary values at the appropriate half-line. To avoid cumbersome notation, suppress the
superscript® and introduce the convention

, if Rz < 0.
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Then boundary values are defined at ( € R by:

Gg e hm GC:I:ze( x), and ((i) " Tim 1(¢ £ de).

e—0t

The operator boundary values Ggi exist as strong limits in the weighted L? topology to be
described below. In fact there is a pointwise estimate for the boundary values of G2:

Lemma 1-1. Let G% be defined as above. Then there is some constant C independent of { and
x such that both limiting values of G satisfy the following estimate:

1
|Ges ()] < Clog(|z| + m)

Proof. The original Green function G, (x) satisfies the classical estimates below, obtained by eval-
uating a contour integral in three pieces:

lz=l/2 it et oo eit
|G.(z)| = |Gx:(1)] £ C / dt+/ dt+/ ——dt
0 t—xz rt—zz 3wz|/2 t — T2

where T is a small semicircular arc that dodges the singularity at ¢ = |zz|. The first two terms are
uniformly bounded in |zz| since the length of the curve is ¢|zz| and the integrand is dominated by
¢/|zz|. The third term is bounded for |zz| > 1, by integration by parts. Otherwise, consider its

b

decomposition into f;l:w' 2t floo. The integral to infinity is bounded, and we are left with

1 it 1 it
1
/ ‘ dt:/ < £ —) dt—l—log(§|x2|).
3lzz|/2 t — T2 sjwz/2 \t =22z t 2

The integral is bounded, leading to

B(zz), if |zz] > 3,
B(zz) +logzz, if |zz| <1

G.a) - {

with B bounded. For |z| < 1, log |zz| — I(z) — log |z| is bounded. For |z| > 1, if |zz| < 1/2, then
log |xz| <loglz|). O

The significance of this lemma is that G9* € LY (dz) for every 1 < p < oo, with norm uniformly
bounded over z € C\ R*. Contrast this with GT, which belongs to L} (dz) for 1 < p < oc but
with a norm that blows up as z — 0.

Convolution with GY is therefore bounded uniformly in z on certain weighted LP spaces. Let
w(x) =14 |z|. It is elementary to show that for any n > 0, w™(z — y) < w"(x)w"(y), so w" is a
weight function in the classical sense.

Lemma 1-2. Suppose 1 < p < oo. Ifw"f € LP(R) for some n > (p — 1)/p, then there is a
constant C' depending only upon n for which |Gof(z)| < Cw™(x)||w™f]|L»-

Proof. Multiplying and dividing by the weight w"™ yields the estimate:

GOf(x)] < / G — y)f(y)| dy
R

G )]
_w@)/Ri( Sl (1)1 )] dy

z)w"(y
< [ Sl

lw" (y) f(y)| dy.
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By the previous lemma, if n > (p —1)/p def 1/p, then w™"GY belongs to LY (R). By assumption,
w" f belongs to LP(R), so the convolution is bounded and we have

G2 ()] < w"(2) [lw™" G| v lw" fl s

Taking C' = sup, Hw‘”GgHLp,, which depends only upon n, completes the proof. [J

Corollary 1-3. The operators Ggi are strong limits in B(w™"LP,w"™ L*) of operators Ggiiea as
e — 0, for every n > (p—1)/p.

Proof. Looking ahead to the proof of Proposition 1-7, we see that Gg 1ic(x) is Holder continuous in
¢ for each fixed x, so that Ggiief(:v) — Ggif(w) as € — 0 by the Lebesgue dominated convergence
theorem. This convergence is uniform in x on compact sets.

Now, if w™f € LP, then also w" % f € LP, where § > 0 can be so small that n — ¢ > (p — 1) /p.
But then w="*? (:E)Ggiie f(x) is bounded uniformly in x, ¢ and e. This extra decay ensures that
w*"(:v)Ggiief(a:) — 0 as |z| — oo uniformly for all e. Thus w*”Ggﬂef — w*"Ggif in L>*. O
Corollary 1-4. Suppose w™q € L? for somen > (p—1)/p. Then the family of operators z +— Ggiq
is bounded analytic in B(L>®,w"L>) for z € C\ R*.

Proof. Analyticity is clear, since q : L™ — w™"LP and does not depend upon z. Boundedness fol-

lows from the maximum principle, since the operator norm of Ggiq is dominated by the supremum
of its boundary values, which are estimated in Lemma 1-2 and Corollary 1-3. [

Thus, given a small potential ¢ with sufficient decay , it is possible to iterate the map G%q to
construct slowly increasing functions analytic in z off the real axis. These satisfy an estimate in x
uniformly for all z. This is the basic existence result for the improved scattering equation.

Proposition 1-5. Select 1 < p < oo, and set n > (p — 1)/p. If w?*"q has small norm in LP(R),
then for every z € C\ R*, there exist unique solutions m°* € w™ L to the integral equations

(1.4) mO% (z,2) =1+ G(Z)iqui(a:, z).

In addition, if w"*'q has small norm in LP(R), then for every z € C\ R*, there exist unique
solutions p°* € w™ L™ to the integral equations

(1.5) Pt (x, 2) = iz + GgiqpOjE (z, z).

Furthermore, the maps ¢ — m°* and q — p°* are uniformly bounded in z for each q in some
neighborhood of 0. Finally, the maps q — gm®* and q — ¢p°* are Lipschitz continuous in q at
q = 0, with Lipschitz constant bounded uniformly in z.

Proof. For simplicity, suppress the superscripts®. Consider first the integral equation for gm?,
where g = g(x) is some measurable function. Observe that whenever the series converges,

(1.6) gm’ = g+ gGlam® = g + gGlq + gGlqGlg + ...
By Corollary 1-4, there is a constant C,, independent of both x and z for which |GY¢(z)| <

Crow™(z)||w"q| Le. But then |w"qGlq|lL» < Cy|lw?"q| Ler||w™q|lL» < co. This allows another
application of G, so it is possible to iterate G2q. Thus for arbitrary g,

(1.7) 9(Ga)" 1] (. 2) < CElw" @)g(@)] [w?a]," " q]1s-
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Hence, for small enough ¢ the series in Eq.(1.6) converges pointwise geometrically, uniformly at
every z € C\ R*. Moreover, noting that [|[w"q||z» < |[[w?"q||L». it yields the estimate

jwr (@)g()|
1= Cullw?a] -

0

|g(@)m® (@, 2)| <

Taking g = w™" shows that for small ¢ a unique solution m” exists and grows slowly in the

sense that |mO(z, 2)| < M (1 + |z|)™ for some constant M independent of z.
Taking g = ¢ and arbitrary p shows that

[w"ql| v
1= Cpllw? q| s’

llgm®||z» <

proving Lipschitz continuity at ¢ = 0.
For p°, the iteration of G%q yields

(1.8) gp’ =iz g+ gG(Z)qu =irg+ gGg (izq) + gGqug(im q)+ ...

The LP norm of iz w"(x)q(z) is majorized by ||w™1q| .. Repeating the previous argument yields
the estimate

(1.9) 19(G)" (i) (2. 2) < Chlw" (@)g(w)| [w?a] ;" [l +al

Hence, for small enough ¢ the series in Eq.(1.8) converges geometrically, again uniformly for all
z € C\ R*. Moreover, it satisfies an estimate similar to the one for m°:
Cp |w" || e [w" (z)g(z)]
1= Cn|lw?rql| e

|9(2)p" (x, 2)| < |iz g(2)| +
Taking ¢ = w™ "' shows that for small ¢ a unique solution p° exists and grows slowly in the
same sense as m: there is a constant N independent of z such that |p°(z,2)| < N(1 + |z|)" 1.

Observe that both |iz g| and |w™g| are dominated by |w"*q|. Thus, taking g = ¢ shows that

[w™* gl e

1—Cyllw?nq|| e’

(1.10) llgp’ll e <

proving Lipschitz continuity at ¢ =0. [

There is another family of functions important to the analysis of this problem, whose properties
derive from a similar construction. These arise from the jump discontinuities in z of the functions
mP% (x, z) across R*, and therefore are only defined at real values of z, which shall be renamed ¢
to emphasize this distiction.

For real ¢, denote by e and e* the operations of multiplication by e**¢ and e **¢, respectively.
Then it is easy to see that for any z € C\ R*, the operators e* Ggieq satisfy the same estimates
as Ggiq. Thus for ¢ small in the sense of Proposition 1-5, there are unique solutions N*(z, z, ¢)
to the integral equations

(1.11) N*t =1+ e* G2 eqN®.

As before, [w™"N7*| will be uniformly bounded in z, z, and (.

Now define two functions
(1.12) n%%(z, ¢) L Jim NE(z,¢ —ie, ().

e—0t

Because of the properties of N*, the following is immediate:
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Proposition 1-6. Select 1 < p < oo, and set n > (p —1)/p. If w?"q has small norm in LP(R),
then for every ¢ € R the function n°*(x, () exists in w™L>°. Furthermore, the maps q — n°* are
uniformly bounded in ( for each ¢ in some neighborhood of 0. Finally, the maps q — gn°* are
Lipschitz continuous in q at ¢ = 0, with Lipschitz constant bounded uniformly in . [

These n°F are related to the eigenfunctions of the selfadjoint operator —id/dx — Vg introduced
by Anderson and Taflin in [AT]. Improving the operator V; as above allows these improved eigen-
functions to be constructed with good estimates. Indeed, they have a smooth dependence upon
the spectral variable, as will be shown below. The functions p°* and m°* are holomorphic in
the upper and lower half z-plane with a jump across the real axis which is (almost) an improved
eigenfunction, so they shall be called pre-eigenfunctions.

These improved spectral objects inherit the same smoothness in the z-variable that G, gains
when it is modified into GY:

Proposition 1-7. If q is small with sufficient decay (as in Proposition 1-5), then for any 6 < 1 the
functions m°* (z, z), n°* (x, z) and p°*(x, z) are Hélder continuous of degree & in the z-variable.

Proof. Since GY is the Cauchy integral of a bounded function, we can use an estimate for the
Hilbert transform of [e!*¢—x(£)]1r+(€). For every z € R, this is a Lipschitz continuous function
of £. By a well-known result, therefore, for every § < 1 there is a constant Cs, independent of ¢
and z, such that

G2y (2) — GLp(2)] < Cs||[e™ —XIra|[5I¢ = I° < Cs(1 + |22)[¢ = ¢')°,

where || - ||s is the Holder norm. The decay of ¢ at infinity will kill off the growth of this estimate
in z.
The Holder continuity of m%* follows from that of G9*:

M (2, 2) = m" (2, 2') = (GUa — GIFa) m™ (2, 2') + G q (M (w, 2) — m"E (2, 2'))

The first term is O(|z — 2|?) for all 0 < § < 1. Since Ggiq is a contraction, m®* (z, z) — m°*(z, 2’)
is likewise O(|z — 2’|%). Similar arguments work for p"* and n°%, the latter having z restricted to
the real axis. U

In passing, note that the iteration (I — Ggiq)_l(xk) converges for k > 1, so long as w"t*q

belongs to LP(R). This means that ¢ must have sufficient decay to get things started. For
lq(z)| ~ w(z)™7 as z — oc, the requirement is [w"t*=7|P € L1(R), or that pn + p(k — j) < —1.
Since pn > p— 1, this implies £ < 7 — 1. A consequence of this estimate is that the rational soliton
solution ¢ = 2(1 + (z — t)?)~! has too little decay as z — oo for the eigenfunctions to be regular.
There are, conversely, no small rapidly decaying solitons for the Benjamin—Ono equation, for they
would correspond to singular eigenfunctions.

2. SCATTERING DATA AND DEPARTURE FROM HOLOMORPHY

The pre-eigenfunctions and eigenfunctions satisfy nonlinear differential equations in the spectral
variable. These may be written as simple linear equations with coefficients, or scattering data,
that are functionals in the potential. It will be shown that the solutions to these equations are
determined uniquely by the coefficients.
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The (improved) scattering data are integral transforms of the potential against the improved
eigenfunctions:

(2.1 () [ @y (a.2) de

(2.2) 5O [ e gan 2, ¢) da,
(2.3 P46 [ @) de

(2.4) PO () et /R iz e~ () nOF (2, —C) da.

Using the existence results of the last section makes the following immediate:

0+ 0+

Proposition 2-1. For any n > 0, the maps ¢ — «"= and q — s°* exist and are continuous
(or even analytic) between small neighborhoods of 0 in w™"L!(R) and L>. Likewise, the maps
q — B°F and q — r°F exist and are continuous between small neighborhoods of 0 in w=""'L*(R)
and L*°.

Proof. Choose p =1 in Proposition 1-5 and Proposition 1-6. [

Because of the syminetries of the operator Ggi, these functions have other integral representa-
tions obtained by transposition. In particular, there are the following relations among transposes:

(2.5) G (-2) =G (2) = 'GT =GT,,
since y is an even function, [*(2) = I (—z). Therefore,
(2.6) G (—2) = G (z) = 'GY¥ =G%E

With enough decay in ¢, the integrals defining the scattering data above are absolutely conver-
gent and allow transposition as follows:

(2.7) "% (2) = /Rq(:v)m()i(x,z) dr = /Rq(:v) (I—Ggiq) ldx
- [ (1-1€a) e
= /R (I- qG(f';)_l q(x)dx
- /Rq(x) (T-G%q) " 1da

:/ q(x)m T (z, —2) dx
R

= a'F(=2).
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For s, it is necessary to keep track of the direction of the limit:

(2.8) 9% (() = /R e o) (z, —C) da

-1
— 1 —ix - 0F *
= Eli%i Re q(zx) (I eG ", e q) 1dz

-1
— el—i>I(I)1+ N (I — t(eG(()fOﬂ.ee*q)) e*q(x) dx

—1
= 61_1)1(1;1+ N (I — qe*Gg_iH.ee> e'q(z) dx

—1
— i —ix¢ (0%
- 61_1%1+ N e “q(x) (I GC—H‘eq) ldx

= lim e~ q(x)m F (z, C+ie) dx
e—0t Jr

= / e q(x)m * (z, C+) de.
R
Similar formulas hold for the other two functions:

(2.9) % (z) = /Rw: q(x)m T (z, - 2) dx,

(2.10) P05 (¢) = / e g (2)p™ (2, (1) da.
R

The scattering data used in the formal schemes is the above with no renormalization, namely
with x = 0. This gives functions o and §* defined on C\R*, s* and 7% defined on R*, m* and
p* defined on R x (C\R*), and n* defined on R x R*, whenever they exist. These may be related
to the improved functions above.They are rational expressions in the improved eigenfunctions and
improved scattering data. To show this, it is necessary to assume that the original integral equation

have solutions, namely that I — GEq and I — e*G¥eq are invertible. Then,
mO% (z,2) =1+ Ggiqui (z, z)

= 1+ GEqm®(x,2) - I*(2) / a(y)m®™ (y, 2) dy
R

=1+ GIam*(z,2) = (2)a"*(2),

— m"F(z,2) = (I — GEq)™! [1- li(z)a()i(z)]

=[1- I* (z)aOi(z)] (I -Gfq)'1= 1- li(z)a()i(z)} m*(z, z),

m* (z, 2)
1 —1%(2)a%%(2)
Similar relations hold between the scattering data and the improved scattering data:

mO%* (z, 2)

+ = z)m*(z,2)dr = x €z
(2.12) a (z)—qu( ym™(z, z) d /RQ( )1_#(2)@01(2)61

(2.11) — mT(z,2) =
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B s9%(Q)
1= ()% E ()

(2.13) s(¢)

0+ >
(2.14) BE(z) = - li (z)(a)oi(z)'

The relations among the remaining functions are slightly more complicated, but quite similar:

p** (2, 2) = iz + GO @ (z, 2)

= o+ G (e 2) = () [ o) (0.2) dy

=iz + GIqp’* (2, 2) — 17(2) 87 (2),
= p(2,2) = (I - GIa)™" (iz — 1¥(2)"(2))
= p* (2, 2) = IF(2) %% (2)m™ (2, ),

[*(2)8% (2)m** (@, 2)

(2.15) = p(@2) =p (@ 2) + 1 —1%E(2)a%%(z) 7

n%%(z,¢) = 1+ €* G2 qen’ (, ()

=1+ e"G¢Egen”™ (x,¢) — e I*((-) /R e"q(y)n®*(y, O) dy

=1+ e*G¢Egen’™ (2, ¢) — e IF(¢—)s"F (=),
= n*(2,) = (I —e"G¢Eqe) ! (1 —e ™% (¢—)s"F(=(Q))
= n¥(z,¢) — e UE ()" F (= O)mE (z, (),
eTIE(C=)OF (=O)m* (z, ()
1—1%((—)a"%(¢—) ’

(2.16) — nF(z,¢) = n’F(z,¢) +

(2.17) P (0) = / e g(z)p* (z, C+) da
R

1E(C+) B (C+)m ™ (2, ¢+)

[ Eran P wa

= [ ot g +

1(CH) B (¢+)s"(Q)

= O TR

In all of these equations, the only singularity that appears is the possible vanishing of 1 —[*a%*
in the various denominators. For small ¢, this quantity is an approximate determinant of the
operator I — G¥q. The renormalization to an improved series amounts to dividing the operator
by its determinant, although this only makes sense in limited generality. For ¢ of sufficiently
rapid decay, the operator is a Hilbert-Schmidt perturbation of I, depending holomorphically on
z € C\ R. Thus by the analytic Fredholm theorem, 1 — [*a%* vanishes like a power of z — zy at
a discrete set of roots zg.
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In the case of real-valued ¢, there are identities which will be used in a later chapter to show
that the singularity introduced by the denominator is removable. That gives a direct proof that
the scattering transform is continuous in the selfadjoint case. This fact was proved by Anderson
and Taflin by other methods.

Analogous to the Fourier transform, small smooth potentials give rapidly decreasing scattering
data.

Proposition 2-2. Fixn > 0, and let K > 0 be an integer. If w"d*q/dz" is small in L'(R) for all
0 <k < K, then wX(¢)s"*(¢) is bounded for all ¢ € R. In addition, if w"t'd*q/dz" is small in
LY(R) for all 0 < k < K, then w’ (¢)r°*(¢) is bounded for all ¢ € R.

Proof. This is proved by induction on K. Proposition 1-5 and Proposition 1-6 establish the result
for K = 0. Consider the following expression, which follows from Eq.(2.8):

dK —ixC
=01 = | [ (T ) st e .

If ¢ and its derivatives have the stated decay, the derivatives may be transposed onto q(z)m°* (x, (+).
The resulting integral will be bounded if m®* (z, (+) is smooth. But for K > 0 its derivatives satisfy
the integral equation

dK dK qui
demOi(waC+) =G} Ei K )

(#,¢+)

K, 0+

dFmO* d*m
0 (K—k) 0
_G+§ ( ) e (x C+)+Gz+q7de (z,C+).

The sum is bounded by inductive hypothesis, while the second term is a contraction. By Proposition
1-5, the equation has a unique solution in w™ L, and thus multiplying it by ¢ yields an integrable
function.

A similar argument works for r%%. It is merely necessary to use iz g(x) instead of ¢(x) in the
integral equation, which then requires one additional degree of decay from ¢ and its derivatives. [J

The integral equations in the spectral variables may be found by calculating Om?, i.e., its jump.
Both m°t and p°* are holomorphic in the z-variable on the complement of the positive real axis
in C. Likewise, m°~ and p°~ are holomorphic in z off the negative real axis. This is an easy
consequence of the holomorphy in z of the contraction Ggiq off the positive and negative real
axes, respectively. The departure from holomorphy of Green’s function G%* consists entirely of
a bounded jump discontinuity across the + real z-axis. For such functions, the distributional
derivative & = 0/0% gives a measure supported along the real z-axis. It is determined by its
Radon-Nikodym derivative with respect to Lebesgue measure there, namely by the jump. So,
abusing notation only a little, write

(2.18) 0f(Q) & tim f(C +ic) - (¢ — ic).

It is easy to compute this quantity from the integral equations above. First, compute the jump in

G

(2.19) mﬁ*—{i%n“é“—x«m if ¢ >0,
| o _

0, if +¢ < 0.
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This gives an operator-valued jump:

50+ _ [ isgn¢ €% [re Wy, Q) dy — x(C ) Jo f(w. Q) dy], if £¢ >0,
220 06EI0 = | e

Using these relations, the jumps in both m®* and m®~ may be calculated in one step:
om™ (w,¢) = 8 (G qm"™ ) (x.¢)

= ( ) qm®* (z,¢+) + Ggfq (5m0i($a ¢))

i sgn([emc/ e~ q(y)m"*(y, (+) dy
R
if £¢ >0,
- —-X@)/LQQDWWiQAC+de e
+ GEEqIm* (z, (),
0, if £¢ <0.
The integrals are recognizable from the transposition formulas above:
i sgn ¢ [¢7¢s%% () — x(Q)a"F (¢+)] e 0
- _ _ 1 > U,
om = (z,¢) = +GEq (0m™ (2,0))
0, if £¢ <0.

This may be solved by iteration, using Proposition 1-5:

1 ]

SO (2, ¢) { isgn¢ (1-G¥a)  [e7s" () — x(Qa* (¢+)] . if £ >0,
0, if +¢ <0.

i sgnC[s"(0)(I — GPTa) el

= — x(Q)a™ () (I — Gga) 1],
0, if £¢ <0.

if ¢ >0,

This may be now be written in terms of eigenfunctions and pre-eigenfunctions:

(221)  Fm(e.0) = { i sgn € [0 H(On (2, Q) = x(QaH (H)mPH (@ ()], i >0,
0, if +¢ <0.

The functions p°* are also holomorphic off the real z-axis, with a jump discontinuity there. This

may be calculated just as for m°=:

(222) G (e.0) = { i sen ([ rH(OnH (@, ) — x(QFF(EHmH (@ ()], >0,
0, if +¢ <0.

The improved eigenfunction n°* has no holomorphic extension off the real ¢-axis, so it is not
possible to compute its departure from holomorphy. However, its derivative with respect to ( exists
and is expressed in terms of the boundary values of the pre-eigenfunctions.
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Writing z = ¢ + i), denote by D, the derivative in the real direction: D¢ = 9/9¢. Then Dgnoi
is the total derivative of n®* in its second variable. To calculate it, it is useful to first find the
commutator of D¢ with e* Ggfiee:

(D¢, e* G, e f(2,¢) = | Dele™™ G, )| + f(.)

B 1 +oo eix&—ix( it .
b, [%/0 e e (c—m]*f(x,o

_ 1 o 6””— —izCyE .
_DC[%/_C T—i—iedT_e l (C—ze)}*f(m,{)

—ixC ) )
= {m +ize T E(C — de) — e T DAE(C — ie)] % f(z,0)

—e (ﬁ — D¢ - i6>> /Rei“f(y, ¢) dy

+ e ICE(C — de) [zx / eV f(y. Q) dy —/ iy e f(y,C) dy} :
R R

Because of its later appearances, introduce one more new fixed function:

(2.23) Kt (z) & < L Dcli(z)> ., forze C\R*.

—21z
It is easy to show that ki(z) is bounded, analytic, and integrable, in fact with asymptotic behavior
(2.24) kf(z) - 0as z — 0, kT (2)] = O(|2|72) as |2| — .

Then the commutation relation may be written as:

225)  [De.e' G €] fw.0) =" kE(C—ie) [ sy )y
R

R

The derivative D<nOi may be calculated in terms of the improved pre-eigenfunctions and scat-
tering data:

Den(x,¢) = Tim De(l — &' GeZjeq) ™'
1 * ~ 01 -1
= lim [De. (I - "G, eq) |1

= lim (/ — e*G% eq)™! [Dg,e*Goi e} q(l — e*G%E. eq) 1

0+ (—ie (—1ie (—ie

= lim (I — e*G _eq)™! [DC,e*GOi e} QN*(y, ¢ — i€, C).

0+ (—ie (—ie

The commutation relation calculated above breaks the right-hand side into three pieces:

oq) ™" | HE(C o) /R U g)NE(y, ¢ i, 0) dy] ,

(i) lim (I —e*GYE

e—0t e

(1)  lim (I —e*G%%

e—0t (e

eq) ! _ixe’ixc I ze)/

R

iy e q(y)N*(y, ¢ — i€, () dy] :

W g(y)N* (g, — ic,0) dy] ,

(i6i)  lim (I — e GE eq) ™" |—e 1= (¢ — ie) /
e—0t L R
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Since Ggfie — ngf in the strong operator topology, and N*(y, ¢ — i€, ¢) — n°F(y, ) pointwise
as € — 0T, these limits may be evaluated in terms of the previously defined functions:

(i) = e7"CEE (¢ )sOF (- QOmOF (2, (),

(i) = e I (¢(—)s"F (= C)p"F (2, (),
(iii) = —e~ I (¢ )rOF (- Q)m* (z, ¢ ).

Putting these parts together relates DcnoﬂE to the pre-eigenfunctions:

(2.26) Den’*(x,¢) = e "k (C—)sOF (=O)mO* (2. ()
+ e E(C )T (- QP E (2, ) - e TE(C)rOF (- OmE (2, ¢ ).

Equations (2.21), (2.22), and (2.26) form a system of distributional differential equations satisfied
by the spectral quantities associated to a particular potential g. Compare this with the formal
system used in previous analyses of the Benjamin—Ono scattering problem, where the functions
involved were ill-behaved due to the singularity of the scattering operator.

Several other properties of the scattering functions and the eigenfunctions and pre-eigenfunctions
may be deduced from the integral equations defining them. In particular, the various functions
must agree at certain points, which ensures continuity and the convergence of the singular integral
operators involved in the inverse scattering transform.

Proposition 2-3. Given ¢ small with sufficient decay, the functions m°*, p°*, a%*, and % exist
and are Hélder continuous in z on C \ R*. Furthermore, their nontangential boundary values at
¢+, ¢ € R, are Hélder continuous in ¢ of every degree § < 1. Likewise, the functions s°F, r0%,
and n°* are Hélder continuous in ¢ € R of every degree § < 1. Finally, these functions satisfy the
following relations:

(1) lime_ gz a®%(¢=) = s°%(0).

(2) limg gz () = r%(0).

(3) lime_ o= mP%(z, (=) = n®%(z,0) for every z € R.
(4) lim,_ oo p** (2, 2) = iz for every z € R.

Proof. Holder continuity of m0%, , and p°% is shown in Proposition 1-7. It holds for s0%,

0%, %% and 3°F by dominated convergence. (1) also follows from the dominated convergence
theorem. (3) follows from an application of Proposition 1-5 and Proposition 1-6: the function
nO%(¢) — e*m % (¢—) satisfies the integral equation

n0*

nOi o e*mOi - 1- efia?C + e*G(C):_I:eq(nOi o e*mOi).

Now suppose that ¢ is small with sufficient decay. Then e*Ggfeq is a contraction on w€L>°,
uniformly for all (. Borrowing a little decay from g, observe that w=¢(1 — e™%¢) — 0 in L™ as
¢ — 0. Thus, n°* — e*m%* — 0 in w*L> as ¢ — 0, proving (3).

If z — oo through any region where [Sz| > ¢ > 0, then (4) is evident from Eq.(1.14). Since p**
is uniformly continuous in z € C\ R*, the result holds in the limit § — 0.

Finally, (2) follows from (3) and the dominated convergence theorem. [
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3. RECOVERING THE EIGENFUNCTIONS FROM IMPROVED SCATTERING DATA
AND THE INVERSE PROBLEM FOR THE POTENTIAL

Suppose now that the quantities a®*, %%, s9% and 9% are derived from a particular potential

g. Then they are sufficiently well behaved that Eqs.(2.21), (2.22), and (2.26) can be converted
into a system of integral equations which determines unique well-behaved functions m%*, n°*, and
p°%. Being unique, these coincide with the functions computed directly from g. The solution of the
system does not depend upon a priori knowledge of ¢, nor even upon the knowledge that such a ¢
exists. Therefore it provides a key step in the inverse problem for ¢ from the improved scattering
data.

As seen above, eigenfunctions and pre-eigenfunctions satisfy relations deducible from the integral
equations used to construct them. In particular, the relations must hold for the limit of any inverse
process used to reconstruct the potential. Our approach is to write the inverse map as an iteration
scheme and force the partial result to satisfy the relations at each step. This also implies that
the partial results will be well behaved, that the iterated operators will be bounded, and that the
resulting inverse series will converge.

Simpler relations among the original, badly behaved functions may be found in [BC1] and [FA],
although the coefficients or scattering data in those simpler relations are singular. The resulting
integral equations cannot be solved by iteration, because after even one application the norm
estimate of the partial result becomes infinite. Even to show that various quantities in the simpler
relations are finite requires subtle cancellation properties equivalent to knowing the potential. As a
result, previous existence proofs for BO have used selfadjointness, or else have imposed extremely
strong regularity and cancellation properties on both the potential and the scattering data. This
last method fails unless the conditions are matched up and one can show that good potentials give
good scattering data, and vice versa.

By using the improved eigenfunctions, the relations become more complicated but the coefficients
become much more regular. It becomes possible to write down a well-behaved system of equations
satisfied by the functions mY, p¥, and n". The coefficients of this system are the well-behaved
scattering functions a®, 89, s°, and r°, as well as the fixed functions Y, I, and k. Solving this
system solves an inverse problem for q.

Define two pairs of operators: the jump operators,

(3.1) SE (s, a,n,m)(z, () E £i e s(¢)n(z, ¢) — x(Q)al¢+H)m(z, () [ 1r (),

and the derivative operators,

def

U= (s,r,m,p)(x,¢) Sk ((—)s(=C)m(z,¢—)
(3.2) + () s(—Opla, ) — E(C)r(—Om(z, ().

Using these, it is simpler to express the jump and derivative relations of the last section:

(33) O (z,¢) = 5% (s°F, 0%, %, m"™) (2,¢),
(34) O’ (2,Q) = 8% (1", 8%, %%, m*%) (2, ),
(3.5) Den®*(z,¢) = U (s9F, rOF m"% p"%) (2, ¢).

For simplicity, this system will be written only for the functions m°*, n%*, and p°*. Refer to
these as m, n, and p.
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Define the Cauchy integral C' of a Schwartz function f on R as usual:

(3.6) op(zy e L [T LQde

2t J_oo C—2

This will be used to construct m and p from their jumps.
Define a particular inverse J of D,, by the integral

¢
(3.7) G /0 /() dr.

This will be used to construct n from its derivative.

It is not enough to apply these one-sided inverses to convert the differential relations into integral
relations solvable by iteration. It is crucial that the system obtained have a unique solution with
the same properties as eigenfunctions coming from a potential. In particular, Proposition 2-3,
parts (3) and (4) must hold. To insure this, it is necessary to build the relation into the integral
equation.

So observe that the following equations hold for functions related to a small, decreasing potential

q:

(3.8) m(z,z) = CST(st,at,n,m)(z,2z) — CS*(sT,a™,n,m)(z,0) + n(z,0),
(3.9) n(x, ) = Je*UT (s7,r~,m,p)(z,¢) +m(z,0-),
(3.10) p(z, 2) =iz + CST(rt, B, n,m)(x, 2).

Observe that p is a function of m and n, and that Eq.(3.10) may therefore be eliminated from
the system. The two remaining equations define a well-behaved fixed point problem for the pair
of functions m and n. This can now be solved by iteration in the metric space appropriate to the
equation.

The following general lemma, serves to construct the inverse transform:

Lemma 3-1. Let X and Y be complete metric spaces. Suppose T : X XY — Y is a continuous
map on some graph D = {(z,y) € X xY :y € Y.}, where for each x € X, Y, is a closed subset of
Y with T'(z,Y,) C Y,. Suppose there is some C' < oc and € < 1 such that for all (x,y), (z',y’) € D,

dy (T(z,y), T(z'.y)) < Cdx(z,2") + edy (y,y).

Then for each x € X there is a unique fixed point y = y(x) € Y, to the equation y = T(x,y), and
the map x — y(z) is Lipschitz continuous from X to Y with the estimate

dy (y(z),y(z')) < dx(z,2').

1—e¢
Proof. Fix x, pick any yo € Y, and define y,, € Y, recursively by vy, = T(x,y,—1). Then

dy, (Yn+1,Yn) = dy (T(2,Yn), T(2,Yn—1)) < €dy, (Yn,Yn-1) < " dy, (¥1,%0)-

This last term is finite by the continuity of 7. Thus, ¢ < 1 implies that {y, } is a Cauchy sequence,
which has a limit in Y,. Since T'(x,-) is a contraction on Y,, this limit is unique, hence it is
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independent of yg: call it y(x). To show that x — y(x) is Lipschitz continuous, let x, 2" belong to
X. Then

dy (y(x),y(a")) = dy (T(z, y(2)), T(2', y(2'))) < Cdx (z,2") + edy (y(z), y('))

— (o), y(@) < T o—dx(z.7). O

Naturally, the subtleties of the Benjamin—Ono scattering problem are not evident in this general
result but in its nontrivial application. It is necessary to find the right metric spaces for the
operators 1" which are given by the inverse scattering method.

Fix 0 < § < 1 and let W be the space of measurable functions f : R — C such that

(1) There is some fo, € C for which f — f., € L*(R), and
(2) f € Lips(R), i.e., there is some constant C' > 0 for which |f(x) — f(2')| < Clz — 2/|°.
Denote the infimum of all these constants for a given f by || f||Lip,-

Evidently, W is a Banach space with norm

Ifllw = [fool + [If = fooll2 + I fl|Lip,

and a complete metric space with metric dyw (f,g) = ||f — gllw. Define W° = {f € W : foo =0} =
L? N Lipg, and for each k € C put Wy, = {f € W : f(0) = k}. Finally, put W = W° N W,. All of
these are closed subsets of W, hence are complete metric subspaces of W.

Multiplication by 1gr+ followed by the Hilbert transform is continuous from W to W°. Note also
that W is contained in L*°(R), with elementary methods yielding the estimate || f||L~ < 3||f]lw -
An immediate consequence of this is that W is a Banach algebra, with W°, Wy, and W all being
(closed) subalgebras.

For f = (f1, f2, f3, f4), define the closed subset D C W% x W x W x W to be the graph

(3.11) D ={f: f1(0) = f2(0), f3(0) = f4(0)}.

Lemma 3-2. The following estimates hold for all small functions f, f' € D:

(3.12)  [CS(H=CS()w < esllfi—Ffillwo + callfo=follw + erll fs—Fsllw + c2ll fa—fillw-

Here the constants ¢;,1 < i < 4 are controlled by the corresponding f;, f/ and can be made as
small as desired:
leil = O(Ifill + I£1D),  fori=1,2,34.

Proof. For (3.12), it is sufficient to show that S maps D to W, for then the result follows from the
continuity of the Hilbert transform on WY, as stated above. Simplifying the notation somewhat,
write

(3.13) S(f)-S(f) = xilelfifs—fifs] — x[f2fa—f3fi]) 1rs
= Fi(e[fi(fs—f3) + f3(fi—fD] = x [fo(fa=f1) + falfo—F2)]) 1Rz

Now S(f) and S(f’) are both in the closed subspace W9, since f, f’ € D. This smooths out the
discontinuity introduced by 1g+. The estimate in Eq.(3.12) thus holds for S(f) — S(f’) because
WY is an ideal in the Banach algebra W. The estimate holds for C'S(f) — C'S(f’) because the
maximum principle applies, so C' is controlled by the Hilbert transform. [J
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Define W! = {g € W(R™) : [g(¢)| = O(1/¢) as ¢ — oo}. This will be shown to be the space of

scattering functions s, 70 arising from potentials ¢ with one derivative. Define also jW*, where

7(0) def max{[I* ()|, [T (¢£)|}. This j is introduced because U involves multiplication by [ and

k. Egs. (2.17) and (1.2) imply that j({) ~ 1/¢ as ( — oo and that j({) ~ —log¢ as ( — 0. In
particular, if g € jW?, then g(¢) = O(1/¢?) as ¢ — oo, and g(¢) = O(|log(]|) as ¢ — 0. Both W
and jW?! are Banach spaces with the obvious norms. In addition, W' is a Banach subalgebra (in
fact an ideal) of W.

Put W = W' x W! x W x W. Then a result similar to Lemma, 3-2 is true for Je*U on W.

Lemma 3-3. The following estimates hold for small f, f' € W :

(3.14) [|Je*U(f)—Je"U(f")lwr < baallfr—fillws +bsl[ f2—fallw +brz2ll fa—fallw +b1 fa—fallw-
The constants by, I = 1,3,{1,2},{3,4} are controlled by the corresponding {f;, f! : i € I} and can
be made as small as desired:

|b1| = O(Z [Hfz” + Hfz/H])v for I =1,3, {1a2}7 {374}'

i€l

Proof. Note first that U : W — jW! is continuous: multiplication by s°F or r°* maps W to W,
and then multiplication by k% or {* maps W' to jW.

Second, observe that e* : jW! — jW! is continuous for any fixed = € R.

Third, note that jW?! c L'(R™), so that Je*U is bounded and absolutely continuous. It tends
to a constant at infinity at a rate that can be estimated by Schwarz’ inequality: the difference
between them is dominated by O(1/¢) as ¢ — oo. In particular, this is in L2(R*). Also, since
f € W1 is bounded for ¢ > 1 and O(1 — log() for 0 < ¢ < 1, Jf satisfies a uniform Hélder
estimate for every fixed degree § < 1. Together, these show that J : jW?! — W1 is continuous.

To show that the estimate holds, consider the decomposition

(3.15) Uf) =Uf) =k(frfs—f1f5)
—U(fafs=fof3) + L (frfa—f114)
=k (filfs=f3] + f3lf1—fi])
+U(ALa= L+ falh=f] = Ll f3] + f3lfa—f2]) -
Since the components of W are Banach algebras, |U(f)—U(f’)||jw: is controlled by the expression
(3.16) baall fr—fillwr + bsll fa—Follwr + bazll fs—fallw + ball fa—fallw -
Then Je*U is controlled by the expression in (3.16), completing the proof. [

Corollary 3-4. The map (m,n) — p defined by Eq.(3.10) is Lipschitz continuous in m,n € W.
The Lipschitz constant is O(||r||wo + ||B]|w)-

Proof. Apply Lemma 3-2 with f1 =r, fo =08, fs=n, fs =m. U
Now write p = p(m,n), where (m,n) — p is Lipschitz with small constant. Consider the map
(m,n) — T(s,r,«, B, m,n), where T = (13,13) is defined by:
(3.17)
Ti(s,r,a, B, m,n) = CST(sT,a®,n,m)(z,2z) — CST(st,a™,n,m)(x,0) + n(zx,0),
(3.18)
To(s,r,a, B,m,n) = Je*UT (s7, 77, m,p(m,n))(x, ) +m(z,0-).

It is now a simple matter to prove the main theorem on the inverse problem for the improved
eigenfunctions and pre-eigenfunctions from the improved scattering data:
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Theorem 3-5. For small s,7,a,3 in the subset X C W'xW?'xW xW defined by {a(0) =
5(0), 3(0) = r(0)}, the fixed-point problem

(m,n) =T(s,r,a, 3, m,n)

has a unique solution (m,n) € W x W. Furthermore, the implicit map (s,r, v, 3) — (m,n, p(m,n))
is Lipschitz continuous in all components.

Proof. Let X be as defined, let Y = W x W, and set D = X’ x Y for a sufficiently small X’ C X.
Then T satisfies the hypothesis of Lemma 3-1 with (m,n) € Y, proving most of the result. The
Lipschitz continuity of (s, a, 3) +— p follows from Corollary 3-4. [

Having recovered the eigenfunctions from the improved scattering data, there are several repre-
sentations of the potential function ¢ available. The most direct is the Born approximation.

Suppose that ¢ has enough decay to guarantee the existence of the various eigenfunctions and
scattering data, and is smooth enough so that the scattering functions s°* decrease to 0 at infinity.
Then ¢ may be computed from the asymptotic behavior of those eigenfunctions. This behavior is
determined by the integral equations the eigenfunctions solve.

Eq.(1.12) gives the asymptotic behavior of n°*(z, () as ¢ — Foo:

(3.19) % (w,¢) = 1+ &' G2 ean" (x, ()

+oo elat
=1+ lim (/ - dt) s« qn'F (z, )

e—0+ 74 t —I— 1€

(S /R eSq(y)n®*(y,¢) dy

Now, the last integral in this equation is bounded uniformly in ¢, while I[((—) — 0 as { — +o0.
In addition, the z-derivative of the last right-hand term vanishes as z — oo, so that the integral
equation for n%F(z, oc) may be reduced as follows:

00 izt
%t (z,00) = 14 lim </ c dt) x qn®T (x, 00),

e—0+ oo b€

: d‘i n* (2, 50) = q()n®* (z, 00),
(3.20) — n"T(z,00) = c exp [z /_ﬂ? q(y) dy} ,

where ¢ = nt(—oc0,0). Alternatively, take the other primitive of g(z) and write:

(3.20') O (2, 00) = ¢ exp[ ' / T aw )dy]

Here ¢’ = n%* (00, 00). Notice that the equatlon for n°

n® (x, —00) =1+ <

o0) is very similar:

(@,
) v (o).

— %%no (z, ~00) = —q(x)n’ (x, —o0),
(3.21) — n0 (x,—00) = & exp [—i /_90 q(y) dy} ,

(3.21) — n""(z,—o0) = & exp [2 /:O q(y) dy} .
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Observe that n%% (x, +00) may have the same value at z = 400 and z = —oo if and only if Jra =0.
In particular, these equations for n°* may be used in a Born approximation for g:
(3.22) () = Jim_ - logn®*(z.0)
. )= lim ——Ilogn ~(z,().
9 (—+too 1 dzx & ’

Either of the * parts of n°* contains enough information to recover the potential g. Unfortunately,
this method does not lend itself to useful estimates, nor to efficient numerical algorithms.

There are also integral representation of g. Recall that PT and P~ denote the orthogonal
projections of L?(R) onto H? and H?, respectively. Then

(3.23) q(z) = P*q(z) + P~q().

The equation defining n may be rewritten as

(3.24+) (%% — g) ent(z,() = Ptqen™ (z, (), if ¢ >0,
(3.24—) <%% - (_f) en (z,() = —P qen™ (z,(), if ¢ <0.

Likewise, the equation defining m®* may be rewritten as

(3.25) L ot ca)—¢ i 2, ) — 1] = {

i dx

Pram*(z,(), >0,
—P~gm~(z,(+), if(<0.

The jump in m* expresses m*
gives the following representation:

in terms of s* and n*. Using the Cauchy integral operator C

(3.26) m*E(z, 2) = 1 + C[i sgn e s (O)n* (z,)1r=(0)](2) e+ Csen*(z, 2),

where s denotes the operator multiplying by +i s*(¢)1r4 (), if ¢ > 0, 0or —i s ({)1r_(¢), if ¢ < 0.
Rewriting Eq.(3.25) in terms of m — 1 yields:

1d .
(3:274) Praa) = (14— Pra—¢) e c) 1, if¢>0,
_ 1d _ _ .
(3.27—) P q(:r)z—(;a—P q—C) [m™(z, () — 1], if ¢ <0.
Using Eq.(3.26) reduces this to:
(3.284)
1
Ptq(z) = (;% — Ptq-— C) Csen™ (z,(), if ¢ >0,
1d
= [(;% - P+CI* C> aCS:| en+($, C)v
= [-¢, C)sen™(x, ), since ldi and P*q commute with C' and s,
i dr
1 oo

“5 ) sgn ¢ e st (()n (z, () d¢,
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(3.28—)
Poge)=— (2L~ Pq-¢)Csen (2,0), (<0
q(z) = e q- sen (z,(), i ,
1d _ _
- |:_ (;% - P C) 7CS:| en (:E7C)a
_ . 1d _ .
= [(,C]sen™ (z,(), since — - and P~ q commute with C' and s,
i dx
1 /0

=5 | senCe s (OnT (2, Q) dC.
T J-c0

If it is understood that n(z,¢) = n*(x,¢) if £¢ > 0, then these can be combined to give a
representation for ¢ in terms of the scattering function s:

1

- / (a0 d¢

(3.29) q(x) =
Observe that this formula agrees with the abstract result from spectral theory, where s* is the
distorted Fourier transform of P*¢, and the transformation is given in terms of the eigenfunctions
n*. Unfortunately, this result is useless without reasonable estimates on n* and s near z = 0,
which requires the use of n%* and s°*
Equations (2.11) to (2.17) may be used to give representations of ¢ in terms of good eigenfunc-
tions:

(3.30)

_ 1 > ix SOi(C)
ale) = %/_ooe 1 — ()" ()

O£ (o o—iC £ SOF(_ (z,¢+)

x[ (@.0) + ()0 (~() — ()0()]d<
L[ e SO0 BSOS OmPE @ )
T /oo[ [ E 7o P v B s T S PUET rare) ]dc'

4. RELATIONS AND DEPENDENCIES AMONG THE SCATTERING FUNCTIONS

To recover the eigenfunctions, and thus the potential ¢, from all the various functions used above
is not too difficult. What is surprising is that the single function r° suffices to determine all the
others and therefore to determine q. As a consequence, solving the initial value problem for r°
solves the Benjamin—Ono initial value problem.

Although there are 4 functions (with 4 parts) used as scattering data, they are all related by
virtue of coming from a single potential q. These relations may be stated abstractly, without
reference to ¢, using the jump and derivative calculations below. This reduces the redundancy in
the scattering data prior to solving the inverse problem for the potential.

The functions a®* and $°F are holomorphic off the real z-axis, so they are determined by their
jumps across the real axis. These jumps may be computed in terms of the jumps in m%* and p°*
which involve the function n°* as well.
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0+

First, calculate the jump in a”* across the real axis:

(4.1) aa()i(C):/ q(m)émOi(w,C) dx
R

_ { i sgu( [s95(0)s"F (—¢) — x(Q)a"™ ((H)a ()], if £¢ >0,
o, if +¢ <0.

This may also be expressed in terms of the jump operator defined in Eq. (3.1):
(4.2) 8o () = SF(s°%, a5, 5°F,a%5)(0,¢).

Here the subscripts indicate whether to use the upper or lower boundary values at R of a function

defined on C\ R. Also, 3°F(¢) def s9F (—¢). This function satisfies exactly the same estimates as
sOF.

For future use, we calculate the jump in 1 — [*a0%:

()0 (¢+) — 1F(¢—)a" (¢-) =
= [I*(¢+) — 15(¢)] @™ (¢H) + 1 (=) [ (¢+) — a®*(¢-)]
=i sgn ¢ x(Q)a"* (¢+) + i sgn ¢ [s"F()s"F (—¢) — x(Q)a’* ((+)a’* (¢-)] I*(¢-),

= 1—1F((-)a" () =1 - IF(¢+H)a"=(¢+)
+isgnd [x(Q)a"*(¢+) — x(Q)a " ((+H)a () + 1E(¢—)s"5(¢)s"F (—0)]

— [1=15(¢)a"F (¢)] [1 =i sgn ¢ x (O (¢+)] =
=1 — IF(C+H)a "  (C+) + 14 sgn C1E(C—) " (Q)s"F ().

Dividing by 1 — I*({+)a *((+) gives:

i sgn ¢l (¢—)s"H(Q)s"T(=¢) 1= 1% (¢—)a(

¢
(4.3) 1 —1*(CH)a0%(C+) 1 1+(¢+)ad* (¢

1= s Cx(©a® () - 1.

This equation holds even for complex q.
Similarly, compute the jump in 3°F across the real axis:

(4.4) G = / o(2)3p"™* (. ¢) dx

R
B { i sgn ¢ [r"=(¢)s"F (—¢) — x (OB (C+)a"*(¢—)], if £¢ >0,
o, if +¢ < 0.

Using the same subscript convention as in (4.2), this may also be expressed in terms of the jump
operator S*:

(4.5) 057 (¢) = 5*(r°*, 5LF, 57T, a2)(0,¢).
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On the other hand, there is no jump in s°*. This may be related to the other scattering data
by differentiation with respect to (:

@0 D0 =D [ e @ @~ do

:/ —iz e q(z)n"F (z, —¢) dx —I—/ e q(x) Dyn’F (2, —C) dx
R R

In turn, this may be expressed as the derivative operator UT defined in Eq. (3.2):
(4.7) D¢s™ () = =% (Q) = UT (3%, 7%, a2F, 82F) (0, —().

Here 7% (—() def r0%E(¢).

The scattering data are determined by these jumps and derivatives. The Cauchy integral C
gives the upper and lower nontangential boundary values for functions analytic off R, from their
jumps. Namely, if the jump of F(z) is the Schwartz function f(¢), then for some constant F.,

(4.8) F((+) — Foo = Cf((£) = lim L/oo _f(r)dr

These operators are to be distinguished from PT and P~ because they act in the (-variable, rather
than in the z-variable. The constant F, is determined by Proposition 2-3. Thus, define the
operator T' = (T'4,T) by

(49) Tu(s"F,al%, 3%, %) (C) = 8% (0)

+ OSE (%%, 0%, 9%, a9%)(0,¢£) — CSE(s9%, aF, 5°F, a%5)(0,0).
Then scattering data from a small potential ¢ satisfies the equation

(0%, a%%) = T(s"*, 2%, 5%, o).
But if s%* € WO is small, and if 7" is restricted to the graph
D = {s°%(0) = a5 (0+), 5°F(0) = "5 (0-)} c WO X W x W x W,

then this operator T satisfies the hypothesis of Lemma 3-1 exactly as in the proof of Lemma 3-2.
Thus the fixed point (ozﬂ_i,a(li) is uniquely determined and depends in a Lipschitz continuous
manner on s’*. But then the holomorphic function a®* is likewise determined. This reduces the
number of scattering functions from 4 pairs (of * functions) to 3.

In fact, only one side of each function s°%* is used: s°*(¢) if ¢ > 0, and s°7(¢) if ¢ < 0. In a
sense, these two half functions are really just a single scattering datum. The implicit dependence

of a®* on these may be stated as the following:
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Lemma 4-1. Suppose that q is a small potential with associated scattering data a°*, and s*.
If $°%(¢), ¢ > 0 and s97(¢), ¢ < 0 are small functions in W°(R™*) and W°(R™), respectively, then
there is a Lipschitz continuous map A = (A4, A_), A: WOxW" — W xW of small constant such
that (aii,oz(li) = A(s"*,5°F). These “boundary values” determine the holomorphic extension
%% (z) = A% (s9%, 50F)(2) to C\ R* by the formula

(4.10) AT (2) = C([AL—A_|1r+)(2) + Co,

where C, % —A_(s%%,597)(0) + s°*(0) is chosen to satisfy Proposition 2-3. [

A similar result holds for the function 3°*. First the upper boundary value ﬁ?ri is calculated
by iteration, then the lower boundary value °F is obtained from the jump relation:

Lemma 4-2. Suppose that q is a small potential with associated scattering data a°%, 0%, r0F,
and s°%. If s7(¢),¢ > 0 and s°7(¢), ¢ < 0 are small functions in WO(R*), and r°*(¢),¢ > 0 and
707 (¢),¢ < 0 are small functions in W°(R¥), and a®*(¢4) are small functions in W, then there
is a Lipschitz continuous map B = (B, B_) of small constant, where By : W' x WO x W — W,
such that (ﬂ?ﬁ, 59*) = B(r%*, 50F, oz(li). These determine the function %% = B¥(r0%*, 50F, oz(ii),
holomorphic on C \ R*, by the formula

(4.11) B(z) = C([By~B_]1rs)(2) + Buo,

where Boe & —B_ (ro%, 39F | a%%)(0) 4 9% (0) is chosen to satisfy Proposition 2-3.

Proof. Set T =Ty as in Eq.(4.9), and consider the fixed point problem that B?ﬁ solves by virtue
of Eq.(4.5):
S—i = T—l—(’roj:v S-ia goq:aa(ii)-

0

For a?, 5%, 70 as given, the operator satisfies the hypothesis of Lemma 3-1 for Bg_i € W. Thus the

boundary value ﬂ?ﬁ is uniquely determined as an implicit Lipschitz function of the other three
variables. Write this as ﬂ?ﬁ — B (r%%, 50F o%%).
B_ can be calculated from the jump relation:
BEE(C) = B¢ — 8B° ()
= BYE(Q) — S (%%, B, 5°T, a25)(0,¢).
Into this, B4 may be substituted in two places:

(4.12)
BEE(C) = By (r®,8%F,a25)(¢) = SF(r%%, By (r%F, 87F, a%F), 5°F, a25)(0,¢)

=B (%, 5%, a%%) ().

This map is Lipschitz continuous with small constant whenever S* and By are. [0

Finally, s°* can be related to 0%, a%%, 3%, The particular antiderivative J defined in Eq.(3.7)
inverts D¢ in Eq.(4.7), up to a constant determined by Proposition 2-3.
Define yet another space:

def

= {f e W(RF): f(¢) = O(1/¢?) as ¢ — oo}

This space contains scattering data from potentials ¢ with two derivatives. Note that W2 may be
used instead of jW?! in Lemma 3-3.

(4.13) wW? = W?3R*)
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Lemma 4-3. Suppose that q is a small potential with associated scattering data a°*, 0%, r0%,
and s°%. If r91(¢),¢ > 0 and °7(¢),¢ < 0 are small functions in W2(R*), and 89, a5F are
small functions in W, then there is a Lipschitz continuous map R : W? x W x W — W' of small
constant such that

SO:I: — R(Toi’aoi,ﬁoi)‘
Proof. Solving Eq.(4.7) with J in order to guarantee that s9% € W' gives the equation
(4.14) Q) = —J(rP)(Q) = JUT (5%, 7%, %%, BF) () + Jroo.

Here Ji. is shorthand for the (finite) limit as ¢ — foo of the other two terms of the right-hand

side. Also, U%(0,¢) Ly (0, —¢). This satisfies the same estimates as U™.

With 79, a0, 3% as given, the right-hand side belongs to W!(R*) for small s ¢ W!(R*).
Holder continuity is clear for J(r%%), and follows for the second and third terms by part of Lemma
3-3. Another part of that lemma shows that the differences between the first two terms and their
finite limits at +0co vanish like 1/|(|. A third part of Lemma 3-3 shows that the right-hand side is
a Lipschitz map in s® with a constant controlled by ||7°(|w= + [|a®|lw + [|8°||w. If this is small,

Lemma 3-1 applies to give the result. [J

Substituting for a’*, %% from Lemmas 4-1 and 4-2 into the formula from Lemma 4-3 gives a
fixed point problem for s°* involving only r°*. The solvability of this problem eliminates all but
one of the scattering functions and is the main result of this section:

Theorem 4-4. If r°F are small functions in WQ(Ri), which are associated to a potential q by
the relation in Eq.(2.4), then the other scattering data a°*, 3°%, and s°% related to that potential
may be written in terms of r0%:

aOi _ A(Toi)’ IBOi _ B(Toi)’ SOi _ S(T‘Oi).

The functions A: W? — W, B:W? - W, and S : W? — W' are Lipschitz continuous.

Proof. Substitution into Eq.(4.14) from Lemmas 4-1 and 4-2 yields

(4.15) %% (¢) = Jine — J(r*F)(C)
— JUT (3%, 77, A_(s"F,8%%), B_(r'F, %%, A_(s"F,5%)) (0).

The right-hand side is Lipschitz from (r%,s9%) € W2 x W' to W, by composition. For 70*
small, it is a contraction in s°*. Applying Lemma 3-1 gives S. Composing S with A gives A, and
composing B with S and A gives B.

Now, if these 4 functions are related to the same potential, and are small as stated, then their
relationships are integral equations which have unique solutions. So given that there is some (small)
potential ¢, and that it has small scattering function r%* € W? (Ri), then its other scattering data
must be the ones constructed by this theorem. [

This immediately solves the short-time Cauchy problem for the Benjamin—Ono evolution. The
evolution remains bounded for a while because the function 7% from which we can reconstruct ¢
grows slowly under the corresponding linear evolution.
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Corollary 4-5. If q is a small, smooth complex-valued potential, then there is some € > 0 such
that for time less than e there is a solution to the Benjamin—Ono initial-value problem with initial
data q.

Proof. From the integral equations we see that r0F is approximately the derivative of s°*, which
will be shown in the next section to evolve by s%* (¢, t) = s% (¢, 0) exp(4it¢?). Hence |r9% (¢, )| <
c|¢trP* (¢, 0)]. If g is small with three derivatives, then its associated 7°% decays like 1/ as ¢ — oo.
Thus for 0 < t < ¢, 79%(-, ) remains small enough to insure the existence of q(-,¢). [

Other flows in the manifold of scattering data pull back under the scattering transform, in
general to nonlinear flows of the associated potentials. There are four tangent maps calculable
from the pullbacks from ¢ to the scattering data:

(4.16)
A% (2,t) = /R (q(z,t)m°%(z, 2,1)) " dx = /R (q'mOjE +q%(1 - Ggiq)_11> dx

= / (ciji +q(1— Ggiq)GgiQm0i> dx
R
~1
- / (1 — qG2i> (Gm"*F) dz = / [(1 - tGgiq)_ll} qm°* dx
R R

:/ mOF (z, —z,t)g(x, )m * (x, 2, t) da.
R

Virtually identical calculations give the following:

(4.17) 3% (2, 1) = / mO% (2, — 2, t)i(e, Op° (z, 2, 1) da,
R
(4.18) (¢, 1) = / nOF (2, —C, i, ym® (a, C . 8) da,
R
(4.19) POE(C ) — / nOF (2, —C, 1)z, )P (2, C-+ ) da.
R

These integrals converge absolutely if ¢ is small, with enough decay to guarantee the existence
of a%%, etc. The tangent maps may be used to find other nonlinear evolution equations linearizable
by the same scattering inverse scattering transform.

5. EXTRA RELATIONS AND THE SELFADJOINT CASE

The results of previous sections apply to small but complex-valued potentials g. If ¢ is real
valued, then the operators V, and Glq are selfadjoint. Given this extra hypothesis, it is possible
to use the improved spectral quantities m%*, a%%, etc., to estimate the original spectral quantities
for the unimproved equations. In the process, the range of validity of formal conservation laws
becomes evident, and the singular spectrum of the original operator may be described in detail.

Green’s function GZi for the original integral equation (1.1) satisfies the following symmetry:

1 oo —ixé 1 Foo _ixé
c / © de = GF(a).
0

+ _ P
(5.1) GZ(I)*QW 0 §—2d£*2w £+ 2
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With Eq.(2.5), this gives
(5.2) G =GT, ='GZ.

If x is real-valued in addition to its other virtues, then [* behaves like G¥:

(5.3) 1%(z) = /Oioo (g‘%) d¢ = /Oioo gX(fg)g dé =17 (—z) = I*(2).

Thus GY behaves like G. Using Eq.(2.6) gives:
(5.4) GV (z) = G%%(z) = GOF = G'T = 'GY*.
If ¢ = @, then the following relations hold among the eigenfunctions:
(5.5) m0E (@, 2) = (1 - GYq) 11 = (I — G™Eq) 1

= m"F(z, —2),

(5.6) n9%(x,¢) = (I — e*Ggfeq)_ll = (I - eG((]fo_e*q)*ll
- noq:(xa _C)a

(5.7) pO*(z, 2) = <I - Ggiq>71 @ = (I — G(iq;q)_l (—ix)
= p"F(z, —2).

From these follow relations between scattering data and their conjugates:

(5.8) aOi(z):/Rq(x)mOi(x,z) dar::/Rq(q;)moi(x, —z)dzx

= a%%(=2) = a% ()

(5.9) = (2) = /R ¢(@) % (z, 2) da = — /R ¢(@)p°F (2, —2) do = —F°F (~3),
(5.10) sOi(C):/Re_mcq(ac)m(’i(x,C—i-) dx:/Re”Cq(:v)mOi(x,C+) dx
_ / € g ()% (z, - (CT)) da = / €7 g (2)mO% (z, (~C)+) da
R R
:50:’:(_4)7
(5.11) OE(C) = /R g @) E (@, (1) der = /R e g (2)p"F (2, ~ (1)) da

= / e q(z)p°F (z, (—¢)+) dz = —rOF ().
R

27
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Notice in Egs. (5.11) and (5.10) that a single half of s° or 7"0 determines the other half. For
example, it is enough to know s°*(¢),¢ > 0 in order to know s°~(¢),¢ < 0. This is a property
shared with the Fourier transform of a real-valued function.

Notice too that o is symmetric with respect to complex conjugation. The same is true for
the fixed functions [* and k*.

In the selfadjoint case, even the “bad” original scattering data is well behaved. Consider the
relations between original and improved data in which the denominator is 1 — [*a%*. We can
show that whenever it vanishes, the numerator vanishes fast enough to cancel out the singularity.
This fact is a consequence of Eq.(4.3). If the potential ¢ is real-valued, then in that equation the
right-hand side is bounded. Thus, the division by 1 — I*(¢+)a®*({+) does not introduce any
singularities into the left-hand side. In fact, there is an estimate:

I (02
(5:12) T Hav (¢

< 11— sgn x(¢)a*(¢+)| + 1.

Since the denominators are the same, the following estimate is equivalent:
2

)
¢-)l

:l: S
(5.13) Ll ol “( <11 sgn ¢ x(Q)a™ ()] + 1.

= F(C-)a"

Recalling the circumstances under which s°* exists gives a basic lemmas:

Lemma 5-1. If w"q is small in L*(R) for some n > 0, and q is real-valued, then s°% vanishes at

each ¢ € R for which 1 —1%((=)a*((=) =0 or 1 — IF({+)a*((+) = 0.

Proof. s°% and a%* exist in W for g as given, by Proposition 1-5, Proposition 1-6, and Proposition
1-7. The boundedness of Eqs.(5.12) and (5.13) gives the result. [

Define the sets Z* = {( € R: 1 —[F(¢+)a’F ((+) = 1 — [F(¢—)a " ({—) = 0}. By the lemma,
s9% vanishes on Z%. In fact, if ¢ has enough decay that r% exists, then s°* vanishes to high order
on Z*. This may be proved by a series of lemmas, each interesting in their own right:

Lemma 5-2. 0 ¢ Z*.

Proof. If 0 € Z*, then lim¢_o1*(¢+)a’*(¢+) = 1. This requires that a®(¢+) — 0 as ¢ — 0.
But since a%* is Holder continuous, there is some § > 0 such that [a°%((+)| < [[a%F||Lip, [¢[°. And
s0 1£(¢+) ~ —log( yields a contradiction: lim¢_ol*({+)a’*(¢+) =0. O

Recall the notation D, = 0/9¢:

Lemma 5-3. Fix 1 < p < co and set n > (p — 1)/p. If w"lq is small in LP(R), and q is
real-valued, then D<80i exists and vanishes at each (o € Z*.

Proof. Rearranging Eq.(4.6) gives:

D¢s™(¢) = — (L - IF((-¢)—)a"F((

r

=)
[ (( - ) ((—C)—)+l$((—C)—)ﬁ°¢((—C)—)] s"5(0).

Using selfadjointness via Eqs.(5.3) and (5.8) shows that 1—17 ((—=¢)—=)a’F ((=¢) =) = 1—1F(¢+)a®F (¢+).
When ¢ has the hypothesized decay, r°* is bounded and the first term on the right-hand side van-
ishes on Z*. The second term is bounded on Z*, and the result follows from Lemma 5-1. [
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Lemma 5-4. D¢ (1 —1£a%%) ((+) = —1/(2n¢I*((+)) # 0 if ¢ € Z*.
Proof. First find the derivative of a’*(¢+4) with respect to (:

Dea® (¢+) = Dc/RQ(JC)mOi(l‘,CJr) dx

:/ q(m)[DCim]mOi(m,C+)da:+/ imq(m)mOi(m,C+)d$
R R

~ [ at@D —ia] (1~ G¥Fa) " Lo+ 67%(-0))

- /Rq(x) [DC iz, (1 Ggiq)l] 1da
- [ o) (1 - 6a) ) de 4 87(-0)

+ \7! . -
= /Rq(:c) (I - G2+q> [DC —ix, G(C)J qm®E (x, ¢+) dx
= B2 () + BT (=0) ).
Now [Dg — iz, Ggﬂ = {eDCe*’ngﬂ = e [Dg,e*Ggie} e*, and this last was calculated in

Eq.(2.25). Substituting that expression into the integral above yields:

Dea(¢+) = [

R

q(z) (I — Ggiq)_l <ki(C+) /Itqui(y’CJr)dy) I
+/R(J(a:) (I— Ggiq)—l <ixli(c+)/Rq(y)m0:t(y7(+) dy> i

_ /Rq(x) (I— Ggiq>—1 (Zi(CﬂL)/Riyq(y)mOi(y,CJr) dy> A
— B (¢+) + BF((—¢)-)

= /Rq(:c) (I — G?iq) - (ki((:'i‘)a()i(c_'—)) dx

+ [ o) (1-GlFa) " 1(C) [iwa® (¢4 = B7(=0-)] da
— B%(¢+) + BOF((=¢)-)
= ()0 (CH)? + T ()" (¢+) [B°F(¢+) = BT ((=¢)-)]
— 8% (¢H) + BOF((—0) ).
Finally, rearranging the terms a bit yields
(5.14) D™ (C+) = K (¢H)a (¢4)? = (1 = 15 (¢H)a (¢4) [B7(CH) = 87T ((=¢)-)] -

In particular, if ¢ has enough decay that p°* and thus 3°F exist, then the right-hand side of this
equation simplifies at any root ¢y of 1 — [Ta F to

Dea (Go+) = k=(Co+)a™ (G+)?,  if G € Z7.
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Recall from Eq.(2.23) that D:* = —k* + 1/2n¢, and that if o € ZF then a’*(({+) =
1/1*((o+). This completes the calculation:

(5.15)
De(1— 0% (Go+) = —Del* (o)™ (¢ot) — 1 (o) Dea™ (Go+)

= [0~ g B GG (G| @ (o)

—1
" 2ol * (Got)

One consequence of the last two lemmas is the boundedness of “bad” scattering data:
Lemma 5-5. Suppose that q is real and that w"t'q € L' for some n > 0. Then the ratio

(Y

(5.16) [1— 1E(C+)a%(¢+)]2

is bounded and continuous on R.

Proof. By Lemmas 5-3 and 5-4, both numerator and denominator are differentiable. Both vanish
at each point of Z*, the complete set of roots of the denominator. Hence L’Hépital’s rule may be
used at each ¢y € Z*. Indeed,

, sO%(¢) s D¢s"*(¢)
(5.17) <15?0 1T F(C)ad= (1) CIE?O De[1 = IF(C+)a%*(¢+)]

:0’

because the denominator does not vanish while the numerator does. But then,

lim SOi(C) = lim DCSOi(C)
¢=¢o [L = 1F((+H)a®*(CH)]2 =6 De[l = 1% (C+)a*((+)]?

— lim — (1 = BE((H)a () r(0)
(=G0 2[1 = IE(CH)a¥E ((H)] De[1 — 1 (CH) % (C+)]
+

(
IR (G + 2 (CH)BT(=0)-)] s*(C)
(=G0 2[1 = FE(¢H)a%* (C+)] D¢ [1 — 1 (C+) % ()]

_ ()
2/(—27¢ol*(Co))

This quantity is bounded for all {; € R, because ¢ — 0 faster than [ (¢+) — oo, and I£(¢+) — 0
faster than ¢ — co. Furthermore, its size is controlled by ¢r%*((p), where ¢ = sup |TCl(¢()] ~ T
depends only upon the renormalization, i.e., on Y.

Off Z*, the ratio is continuous, hence locally bounded. But since the numerator is bounded
and 1 — I*(¢4+)a* ((+) — 1 as ¢ — oo, in fact the ratio is uniformly bounded for all ¢ € R. [

— 0= 7ol (Co+H)r"* (o).

An immediate corollary of this lemma is that the conservation law in Anderson and Taflin [AT]
makes sense for all ¢ of sufficient decay, in fact for ¢(x) = O(x=27¢) for any € > 0. It states that
whenever the integral makes sense, we have

(5.18) /Rq(x)dx—/oo |8(|§|)‘ a¢ + Z 2,

- Z+uz-
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But |s(¢)|?/|¢] is integrable in the selfadjoint case by the estimates

co/I¢|(log[¢])?, as ¢ — 0,

2
‘S(|§|)| S cOO/|C|27 as C - Zl:OO,

c15°(), uniformly in any compact set excluding {0, o00}.

For the constant ci, we can use the bound obtained in Lemma 5-5.
Combining the representation of g given by Eq. (3.30) with Lemma 5-5 also gives an alternative
proof of the existence of the inverse scattering transform in the selfadjoint case:

Theorem 5-6. Suppose that q is real and that w™tq is a small function in L' for some n > 0.
Suppose that w™q' and w"q" are also small in L'. Then the eigenfunctions n°* and the scattering
data s% associated to q exist, and q¢ may be represented by the integral in Eq. (3.30), which
converges absolutely.

Proof. That n%* and s°F exist and are bounded is a consequence of Proposition 1-6. The differen-
tiability of ¢ guarantees by Proposition 2-2 that s'* decays like 1/¢? as |¢| — oo. These estimates,
together with the continuity of the integrand implied by Lemma 5-5, imply the result. [J

Corollary 5-7. If the initial data q satisfies the hypotheses of Theorem 5-6, then there exists a
solution for all time to the corresponding initial value problem for the Benjamin—Ono equation.

Proof. In the selfadjoint case, g(x,t) for all ¢ > 0 may be reconstructed from an absolutely con-
vergent integral involving only sY%. But the evolution of s°* corresponding to the BO evolution
is the same as the evolution of s*. Now, the following equations are consequences of the formulas
in Chapter 2:

(5.19) &% (2, 1) = ( ol

| - £ (¢1) |
(5.20) G = (1 +zi(¢+)ai(<+,t)) ’

Obviously, = =0o. Thus, if attention is restricted only to those evolutions for which a* = 0,

the above equations simplify:

(5.21) A% (z2,t) =0,

B §5(¢, 1)
L+ IFE(CH)aF(CH, )

(5.22) s (¢, )

The Benjamin-Ono evolution corresponds to s¥(¢,t) = s*(¢, 0) exp(£it¢?). Thus s°* remains
small for all time ¢ > 0, and the integral representing ¢(x,t) remains absolutely convergent. [

While other investigators have shown global existence for the BO Cauchy problem, the above
proof has the advantage of generalizing to complex-valued potentials, and showing exactly how
selfadjointness guarantees long-time boundedness.
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6. BOUND STATES OF THE SPECTRAL PROBLEM,
AND NON-ANALYTICITY OF THE SCATTERING TRANSFORM.

Previous analyses of the scattering and inverse scattering transforms for the Benjamin—-Ono
equation have relied on the spectral theory of selfadjoint operators to study the associated eigen-
value problem. While the selfadjoint spectral problem that arises when ¢ is real has better analytic
properties than the general (complex) case, it is the complex potentials that determine the behav-
ior of the direct and inverse series. In this section we present two results derived from studying
such potentials.

First, we prove that even for complex potentials, the eigenvalues of the BO spectral problem
cannot accumulate at the origin. This is an application of analyticity of the “improved” problem,
and has not been shown by methods that rely on selfadjointness.

Second, we prove that the power series for the direct problem is not analytic. This is not
because of the presence of bound states, however. Instead, it fails to be analytic because for
generic (complex) potentials g of arbitrarily small size, there are nearby potentials for which s, «,
and so on are arbitrarily large. Thus we are forced to use the “improved” scattering transform
to obtain absolutely convergent series. In fact, the nonanalyticity of the direct problem may be
proved from the representation of the “bad” scattering data in terms of the “improved” data. This
is done at the end of this section.

We begin by showing that there is a small neighborhood of 0 in C in which there are no embedded
eigenvalues.

Theorem 6-1. If q has sufficient decay as © — +oo, then the Benjamin-Ono scattering problem
has no bound states in a neighborhood of the origin.

Proof. The result follows from two lemmas.

Lemma 6-2. Suppose that w™q is a small function in L*(R) for some n > 0. If z is bound state
eigenvalue for the Benjamin-Ono spectral problem, then 1 — 1% (2)a’*(2) = 0.

Proof. Suppose that (-, z) is a bound state, namely a nonzero solution in L?(R), of the eigenvalue
problem —idy/dz — Vb = z1p. Then 4 splits into two halves, ) = PT¢ + P, where P* and

P~ are the orthogonal projections of L?(R) onto H? and H2. Each of these halves belongs in turn
to L2, so that there exist bound states at z for at least one of the two eigenvalue problems below:

1d
(6.1+) =T — PTqy™ =z,

1 dx

1d
6.1— —-—Y +P qy =zY .
(6.1-) S APy =z
In particular, these ¥® must satisfy the integral equation below:

+
(6.2) (2, 2) = GEqy™ (e, 2) = GY q@bi(x,Z)Hi(Z)/ a(y)v*(y, 2) dy,
R

— s = (1= Gl () [ s ay)

(6.3) — %% (z, 2)I%(2) /R )y, 2) dy,

for m%* (z, 2) defined by Proposition 1-5. In particular, the asymptotic behavior of ¢*(z, 2) as
|z| — oo is determined by that of m%%. Now (£(2) [ a(y)¥®(y,z) dy # 0, for in that case ¥E(-, 2)
vanishes identically, so that

(6.4) 0#Y%(-,2) € L*(R) = m°*(-,2) € L*(R).
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But then, both sides of Eq.(6.3) may be multiplied by ¢(x) and integrated with respect to x. This
gives

(6.5) /R Q@) (. 2) = % (2)I% (2) / o) (. 2) dy,

— (1 - E(2)a%(2)) /R 4)b* (v, 2) dy = 0.

Since the integral does not vanish, 1 —I*(2)a%*(2) must. O
But this quantity cannot vanish too close to z = 0:

Lemma 6-3. Suppose that w"q is a small function in L*(R) for some n > 0. Then there is some
neighborhood of 0 € C containing no zeroes of the expression 1 — I (2)a"* ().

Proof. The + cases are identical. With ¢ as given, the function o+ exists and is Holder continuous

in z. There are two possibilities to consider. Either a®*(0) = 0, or a°*(0) # 0. In the first case,
I*(2)a®*(2) — 0 as z — 0. In the second case, |[[T(2)a®F(z)| — oo as z — 0. In either case there
is some open ball around 0 € C for which |1 — I¥(2)a*(2)| > 1/2. O

Combining these lemmas shows that there is some neighborhood of 0 € C containing no bound
states of the eigenvalue problem (6.1+), completing the proof of the theorem. [

Note that for any € > 0, ¢ = O((1+ |z|) 1 ¢) is sufficient decay for the absence of bound states
near 0. Note too that this result holds for small complex-valued ¢, as well as for real-valued g. In
particular, the absence of bound states near 0 for any given potential is a property that that does
not depend upon selfadjointness.

Even though for any fixed small g the determinant 1 — [*(2)a"*(z) never vanishes near 0,
there are other small ¢’s for which it gets arbitrarily small arbitrarily close to 0. Such behavior
destroys the analyticity of the scattering map. In fact, the maps g — s, ¢ — m, and so on are not
analytic without renormalization. We will prove this only for the datum s, which in other papers
is the primary scattering function, but the other cases are similar. In particular, we will show the
following:

Theorem 6-4. Given any € > 0, for any sufficiently small z € R, there is a potential q smaller
than e for which the corresponding s is larger that |log z| at z. The chosen q is generic in the sense
that its associated o® merely has to be nonvanishing at 0.

Proof. From Eq.(4.3), the boundedness of s(z) depends upon that of
1 —1I(z+)a’(z+)
1—1(z—)a%z—)"
But if ¢ is any small function for which a®(0) = [g q(x)m°(z,0)dz # 0, then the analyticity

of the map ¢ + a® plus the smoothness of a” in z assures that the maps w +— a°(z+) are
open in a neighborhood w € C, |w| < 1. Furthermore, then a®(z—) will differ from a°(z+) by
O(]a°(2)|% +15°(2)|?), which is negligible compared to [a(z)|. So write a®(z+) = a®(2—) = £+1in.

Now choose z € R so small that I(z+) =i+ log |z|, [(2—) = —i + log |z|, and so that 1/l(z%) is
in the range of w — a(z4). This is possible since a(0) # 0, and |log z| — oo as z — 0. Choosing
the appropriate w, set £ = 1/log |z| and n = —£/log |z|. This gives the worst possible behavior of
the ratio above, as estimated here:

1-l(z+)a%(z+) 11— (itlogle[)(§+in) _ 1—¢&log|z[+n—i(§—nlog|z)
1—1(z=)a%(z—) ~ 1—(=i+loglz[)(+in) 1—Elogl|z[ —n—i(—§—nlog|z])
_ n—2inlog|z|

= 2ilog |z| — 1.
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As z — 0, this blows up in absolute value. [

The genericity condition on ¢ is satisfied even by almost all functions with infinitely many
vanishing moments. This follows from the series for a:

OZO = X X X 0 X X
(0) /Rq< )d +/Rq< )Gq(x) dz +

No matter how many moments of ¢ vanish, the product-convolution operators ngi will in general
destroy the cancellation. The vanishing of a®(0) requires imposing infinitely many nonlinear con-
straints on ¢q. Hence the formal series scattering transform cannot be made analytic by restriction
to a reasonable linear submanifold.

The formal inverse series contains even more drastic difficulties. It cannot be made analytic by
restriction to a linear submanifold of scattering data, because by Eq.(2.13) and Proposition 2-3, the
formal scattering data s™ behaves exactly like 1 /log|(| as ¢ — 0. Linear operations immediately
destroy this property. By expressing the formal data as rational functions of improved data, we
have instead found a parametrization of these formal data.
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