Vanishing of Hyperelliptic L-Functions at the Central Point

Wanlin Li
University of Wisconsin - Madison

July 10, 2018

Chowla's conjecture

In the book "The Riemann Hypothesis and Hilbert's Tenth Problem", Chowla raised the following conjecture.

Conjecture (Chowla, 1965)

For any quadratic Dirichlet character $\chi, L(s, \chi) \neq 0$ for all $s \in(0,1)$.
In particular, it suggests $L(1 / 2, \chi) \neq 0$.

Theorem (Soundrarajan, 2000)
At least 87.5% of odd squarefree integers $d>0$ have the property that $L\left(1 / 2, \chi_{8 d}\right) \neq 0$ where $\chi_{8 d}$ denotes the real quadratic character with conductor $8 d$.

Function Field

Number field	Function field
\mathbb{Q}	$\mathbb{F}_{q}(x)$
\mathbb{Z}	$\mathbb{F}_{q}[x]$
positive primes	monic, irreducible polynomials
$\|n\|$	$\|f\|=q^{\operatorname{deg} f}$

Let $D \in \mathbb{F}_{q}[x]$ be monic and squarefree. Then we define a quadratic character χ_{D} as follows.
For P a prime in $\mathbb{F}_{q}(x)$,

$$
\chi_{D}(P)= \begin{cases}1 & \mathrm{P} \text { splits in } \mathbb{F}_{q}(x)(\sqrt{D}) \\ -1 & \mathrm{P} \text { is inert in } \mathbb{F}_{q}(x)(\sqrt{D}) \\ 0 & \mathrm{P} \text { ramifies in } \mathbb{F}_{q}(x)(\sqrt{D})\end{cases}
$$

Function field

Definition

Let \mathbb{F}_{q} be a finite field with odd characteristic and let

$$
g(N)=\left\{D \in \mathbb{F}_{q}[x] \text {, monic, squarefree : }|D|<N, L\left(1 / 2, \chi_{D}\right)=0\right\}
$$

Question: Is $g(N)$ equal to \emptyset ?

Theorem (Bui-Florea, 2016)
With the notation above,

$$
|g(N)| \ll 0.057 N+o(N)
$$

for any $N=q^{2 n+1}$ where $n \in \mathbb{Z}$.

Main theorem

Theorem (L., 2017)
When q is a square, for any $\epsilon>0$,

$$
|g(N)| \geq B_{\epsilon} N^{1 / 2-\epsilon}
$$

with some nonzero constant B_{ϵ} and $N>N_{\epsilon}$.

Although the analogous statement of Chowla's conjecture does not hold over $\mathbb{F}_{q}(x)$, it may hold for almost all quadratic characters, i.e. it may be the case that $|g(N)| / N \rightarrow 0$ as $N \rightarrow \infty$.

Geometric Interpretation

Let $D \in \mathbb{F}_{q}[x]$ be a monic, squarefree polynomial. Over \mathbb{F}_{q}, it defines a hyperelliptic curve

$$
C: y^{2}=D(x)
$$

Let $P(x) \in \mathbb{Z}[x]$ be the characteristic polynomial of geometric Frobenius acting on the Jacobian $J(C)$.

Then,

$$
\begin{aligned}
L\left(1 / 2, \chi_{D}\right)=0 & \Longleftrightarrow P\left(q^{-1 / 2}\right)=0 \\
& \Longleftrightarrow \sqrt{q} \text { is a Frobenius eigenvalue }
\end{aligned}
$$

Geometric Interpretation

By Honda-Tate theory, when q is a square, there exists an elliptic curve E_{0} over \mathbb{F}_{q} which admits \sqrt{q} as a Frobenius eigenvalue. Moreover, any abelian variety with \sqrt{q} being a Frobenius eigenvalue has E_{0} as an isogenous factor.

Thus,

$$
L\left(1 / 2, \chi_{D}\right)=0 \Longleftrightarrow P\left(q^{-1 / 2}\right)=0 \Longleftrightarrow J(C) \sim E_{0} \times A
$$

for some abelian variety A.
Moreover,

$$
J(C) \sim E_{0} \times A \Longleftrightarrow \exists \text { dominant map, } C \rightarrow E_{0}
$$

Maps Between Hyperelliptic Curves

Proposition (L., 2017)

Let C_{0} be a hyperelliptic curve defined over \mathbb{F}_{q} with an odd degree defining equation or an even degree defining equation of the form $y^{2}=f$ where f is reducible.
For any $\epsilon>0$, there exist positive constants B_{ϵ} and N_{ϵ} such that the number of polynomials $D \in \mathbb{F}_{q}[x]$ satisfying

- $|D|<N$
- $C: y^{2}=D$ admits a dominant map to C_{0}
is at least $B_{\epsilon} \cdot N^{\frac{1}{g+1}-\epsilon}$ for $N>N_{\epsilon}$.

Application to Ranks of Elliptic Curves

From $E_{0}: Y^{2}=f(X)$ over \mathbb{F}_{q}, we construct the constant elliptic curve over the rational function field $E=E_{0} \times_{\mathbb{F}_{q}} \mathbb{F}_{q}(x)$.

Let $C: y^{2}=D(x)$ be a hyperelliptic curve over \mathbb{F}_{q}.

$$
\exists \text { dominant map, } C \rightarrow E_{0} \Longleftrightarrow \operatorname{rank} E_{D}>0
$$

where E_{D} is the quadratic twist of E by D.

$$
\begin{aligned}
& C(h(x), p(x) y) \mid \downarrow^{\downarrow} \\
& E_{0} \longrightarrow \mathbb{P}^{1} \\
&\left.\downarrow^{1}, Y\right) \rightarrow \mathbb{P}^{1}
\end{aligned}
$$

Since we have $y^{2}=D$ and $p^{2}(x) y^{2}=f(h(x))$, the point with coordinate $(h(x), p(x))$ lies on $D Y^{2}=f(X)$ over $\mathbb{F}_{q}(x)$.

Application to Ranks of Elliptic Curves

Corollary (L., 2017)

Let $E=E_{0} \times \mathbb{F}_{q}(x)$ be a constant elliptic curve over $\mathbb{F}_{q}(x)$. Let $R_{m}(N)=\left\{D \in \mathbb{F}_{q}[x]\right.$: monic, squarefree, $|D|<N$, rank $\left.E_{D} \geq m\right\}$. Then for any $\epsilon>0$,

$$
\left|R_{2}(N)\right| \gg N^{1 / 2-\epsilon}
$$

Corollary (L., 2017)
Let E / \mathbb{F}_{q} be an elliptic curve with \sqrt{q} as a Frobenius eigenvalue, define $P(g)=\left\{D \in \mathbb{F}_{q}[x]\right.$: monic, squarefree, of odd degree, $\left.\operatorname{deg} D \leq 2 g+1\right\}$,

$$
R(g)=\left\{D \in P^{\prime}(g): E_{D} \text { has rank } 0\right\}
$$

Then

$$
\lim _{g \rightarrow \infty} \frac{|R(g)|}{|P(g)|} \geq 0.9427 \cdots+o(1)
$$

Data

\mathbb{F}_{9}			
Degree d	$\left\|g^{\prime}\left(9^{d}\right)\right\|$	$9^{d}-9^{d-1}$	$\frac{\log \left(\left\|g^{\prime}\left(9^{d}\right)\right\| \mid\right.}{\log \left(9^{d}-9^{d-1}\right)}$
3	6	648	0.2768
4	18	5832	0.3333
5	216	52488	0.4946
6	180	472392	0.3975
7	8658	4251528	0.5940

For degree 8,9 and 10 , due to the large number of monic squarefree polynomials, we randomly sampled 5000000 data points for each and got the following data. The sample set is denoted by S.

Degree d	$\left\|S \cap g^{\prime}\left(9^{d}\right)\right\|$	$\|S\|$	$\frac{\log \left(\left\|g^{\prime}\left(9^{d}\right)\right\|\right)}{\log \left(9^{d}-9^{d-1}\right)}$
8	2660	5000000	0.5682
9	3262	5000000	0.6269
10	532	5000000	0.5814

Data

\mathbb{F}_{5}			
Degree d	$\left\|g^{\prime}\left(5^{d}\right)\right\|$	$5^{d}-5^{d-1}$	$\frac{\log \left(\left\|g^{\prime}\left(5^{d}\right)\right\|\right)}{\log \left(5^{d}-5^{d-1}\right)}$
3	0	100	
4	0	500	
5	1	2500	0
6	0	12500	
7	10	62500	0.2085
8	5	312500	0.1272

For degree 9 and 10, similarly, we sampled 5000000 data points for each. The sample set is again denoted by S.

Degree d	$\left\|S \cap g^{\prime}\left(5^{d}\right)\right\|$	$\|S\|$	$\frac{\log \left(\left\|g^{\prime}\left(5^{d}\right)\right\| \mid\right.}{\log \left(5^{d}-5^{d-1}\right)}$
9	317	5000000	0.3222
10	89	5000000	0.3109

References

[1] H. M. Bui and Alexandra Florea, Zeros of quadratic Dirichlet L-functions in the hyperelliptic ensemble, preprint, available on arXiv at http://arxiv.org/abs/1605.07092.
[2] S. Chowla, The Riemann hypothesis and Hilbert's tenth problem, Norske Vid. Selsk. Forh. (Trondheim) 38 (1965), 62-64. MR0186643
[3] F. Gouvêa and B. Mazur, The square-free sieve and the rank of elliptic curves, J. Amer. Math. Soc. 4 (1991), no. 1, 1-23, DOI 10.2307/2939253. MR1080648
[4] Bjorn Poonen, Squarefree values of multivariable polynomials, Duke Math. J. 118 (2003), no. 2, 353-373, DOI 10.1215/S0012-7094-03-11826-8. MR1980998
[5] K. Soundararajan, Nonvanishing of quadratic Dirichlet L-functions at $s=\frac{1}{2}$, Ann. of Math. (2) 152 (2000), no. 2, 447-488, DOI 10.2307/2661390. MR1804529

