Effective Bounds on the Dimensions of Jacobians Covering Abelian Varieties

Wanlin Li - joint with Juliette Bruce
University of Wisconsin - Madison

$$
\text { June 1, } 2018
$$

Abelian Varieties as Quotients of Jacobians

Let $A \subset \mathbb{P}^{r}$ be an abelian variety and C be a smooth curve given by the instersection of A and hyperplanes $H_{i} \subset \mathbb{P}^{r}$. By the universal property of Jacobians, one has the following diagram:

$$
C=A \cap\left(\cap H_{i}\right) \longrightarrow \mathrm{Jac}(C)
$$

where $\iota: C \rightarrow \operatorname{Jac}(C)$ is the Abel-Jacobi map for C.
Since C is a complete intersection on A, the map π is dominant.

Abelian Varieties as Quotients of Jacobians

Combined with Bertini's theorem, when the base field is infinite, every principally polarized abelian variety is covered by the Jacobian variety of a smooth curve.

Moreover, one can give an upper bound on the genus of C.

$$
\operatorname{dim} \operatorname{Jac}(C) \leq\left\lfloor\frac{\operatorname{deg}(A)-1}{r-1}\right\rfloor\left(\operatorname{deg}(A)-\frac{\left\lfloor\frac{\operatorname{deg}(A)-1}{r-1}\right\rfloor+1}{2}(r-1)-1\right)
$$

Question

What happens over finite fields?

Poonen's Bertini's Theorem Over Finite Fields

```
Theorem (Poonen, 2004)
Let }X\mathrm{ be a smooth quasi-projective subscheme of }\mp@subsup{\mathbb{P}}{}{n}\mathrm{ of dimension m}\geq
over }\mp@subsup{\mathbb{F}}{q}{}\mathrm{ . Then there exist homogeneous polynomials }f\mathrm{ over }\mp@subsup{\mathbb{F}}{q}{}\mathrm{ for which
the intersection of X and the hypersurface f=0 is smooth.
```


Poonen's Bertini's Theorem Over Finite Fields

Theorem (Bucur-Kedlaya, 2012)

Let $X \subset \mathbb{P}_{\mathbb{F}_{q}}^{r}$ be a smooth projective scheme of dimension $n \geq 0$ over a finite field \mathbb{F}_{q} of characteristic p. Choose an integer $k \in\{1, \ldots, n-1\}$, a degree sequence $d=\left(d_{1} \leq d_{2} \leq \cdots \leq d_{k}\right)$, and set

$$
\mathcal{P}_{d}=\left\{\begin{array}{l|c}
f \in S_{d} & \begin{array}{c}
X \cap V(f) \text { has dimension } n-k \\
\text { and is smooth }
\end{array}
\end{array}\right\} .
$$

Then

$$
\left\lvert\, \frac{\# \mathcal{P}_{d}}{\# S_{d}}-\right.\text { Main term independent of } d \mid \leq \text { Error term decreasing with } d
$$

Main Theorem

Theorem (Bruce-L., 2018)

Fix $r, n \in \mathbb{N}$ and let \mathbb{F}_{q} be a field of characteristic p. There exists an explicit constant $C_{n, r, q}$ such that if $A \subset \mathbb{P}_{\mathbb{F}_{q}}^{r}$ is a principally polarized abelian variety of dimension n, then for any $d \in \mathbb{N}$ satisfying

$$
C_{n, r, q} \zeta_{A}\left(n+\frac{1}{2}\right) \operatorname{deg}(A) \leq \frac{q^{\frac{d}{\max \{n+1, p\}}}(d+1)}{d^{n+1}+d^{n}+q^{\frac{d}{\max \{n+1, p\}}}},
$$

there exists a smooth curve over \mathbb{F}_{q} whose Jacobian J maps dominantly onto A, where

$$
\operatorname{dim} J \leq\left\lfloor\frac{\operatorname{deg}(A) d^{n-1}-1}{r-1}\right\rfloor\left(\operatorname{deg}(A) d^{n-1}-\frac{\left\lfloor\frac{\operatorname{deg}(A) d^{n-1}-1}{r-1}\right\rfloor+1}{2}(r-1)-1\right)
$$

When A is Simple

If $\phi_{1}: C_{1} \rightarrow A$ is a nonconstant map, then we construct a map $\phi_{2}: C_{2} \rightarrow A$ such that C_{2} is a smooth curve, ϕ_{2} factors through ϕ_{1}, and the induced map $\operatorname{Jac}\left(C_{2}\right) \rightarrow A$ is dominant.

- C_{1} : connected curve, complete intersection in A
- $C_{1, \text { red }}^{\prime}$: reduced, irreducible component of C_{1}
- $\tilde{C}_{1, \text { red }}^{\prime}$: normalization of $C_{1, \text { red }}^{\prime}$
$g\left(\tilde{C}_{1, \text { red }}^{\prime}\right)=p_{a}\left(\tilde{C}_{1, \text { red }}^{\prime}\right) \leq p_{a}\left(C_{1, \text { red }}^{\prime}\right) \leq \operatorname{deg}(A)^{2} d^{2 n-2}+\operatorname{deg}(A) d^{n-1}-2$.

When A is Simple

Theorem (Bruce-L., 2018)

If $A \subset \mathbb{P}_{\mathbb{F}_{q}}^{r}$ is a simple abelian variety, then for any $d \in \mathbb{N}$ satisfying

$$
\operatorname{deg}(A) \leq \frac{(d-1) q^{\frac{1}{2}(d+1)(d+2)}}{d^{n-1}-1},
$$

there exists a smooth curve over \mathbb{F}_{q} whose Jacobian J maps dominantly onto A, where

$$
\operatorname{dim} J \leq \operatorname{deg}(A) d^{n-1}\left(\operatorname{deg}(A) d^{n-1}+1\right) .
$$

Application

Corollary

Fix a finite field \mathbb{F}_{q} of characteristic p and $n \in \mathbb{N}$. There exists a constant $C_{n, q}$ such that if E is an elliptic curve over \mathbb{F}_{q} then there exists a smooth curve C of genus $g \leq C_{n, q}$ defined over \mathbb{F}_{q} such that $\operatorname{Jac}(C)$ admits E^{n} as an isogeny factor, i.e.

$$
\operatorname{Jac}(C) \sim E^{n} \times A
$$

for some abelian variety A.

References

[1] Juliette Bruce and Daniel Erman, A probabilistic approach to systems of parameters and Noether normalization (2016). ArXiv pre-print:
https://arxiv.org/abs/1604.01704.
[2] Alina Bucur and Kiran S. Kedlaya, The probability that a complete intersection is smooth, J. Théor. Nombres Bordeaux 24 (2012), no. 3, 541-556 (English, with English and French summaries).
[3] James S. Milne, Abelian Varieties (v2.00), 2008. Available at www.jmilne.org/math/.
[4] Bjorn Poonen, Bertini theorems over finite fields, Ann. of Math. (2) 160 (2004), no. 3, 1099-1127.

