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Motivations | The Classical Case

Riesz Transforms, BMO and the Hardy Space H'!

For 1 <j<mnlet R;(f)(z) =cn [

' f(y) dy denote the Riesz
transform in the jth variable.

Definition (Bounded Mean Oscillation)

1 9 p
101l Baso(RnY = SUD ( / |b(x) — bg|* (Z;zr)
BMO(R™) P 19| Jo Q

Definition (Hardy Space)

H'(R™) = {f € L"(R") : R;f € L'(R")}

n
”fHHl(IRi”) = HfHLl(R”) + Z HijHLl([E{H) :
7=1
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Motivations | The Classical Case

Commutators and BMO

Theorem (C. Fefferman (1971))
The dual of HY(R™) is BMO(R™), i.e., (H'(R"))* = BMO(R™).

For each j =1,..., n define the following commutator operator on
L?(R™):

b, R;](f)(z) == b(z)R;(f)(x) — R;(bf)(x).

Theorem (Coifman, Rochberg, and Weiss (1976))
Let b € BMO(R™), then for j =1,..., n

(b, Rj” L2(R™)— L2(R™) S ”bHB]\[O(IF’;‘”) :

If ||[b, RJ‘}HLQ(R,,)HLZ(R,,) < 400 forj=1 n, then

||bHBMO(IEin) S 111;1): 1[6, R;] HLz(Rn)a;L‘z(Rn) .
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Motivations | The Classical Case

Factorization and H*
Define the following bilinear operators on L?(R") x L?(R") by:

IIj(g,h) = gR;h +hR;g j=1,...,n.

Theorem (Coifman, Rochberg, and Weiss (1976))
Let f,g € L2(R™) then for j =1,...,n:

HHj(fﬂg)HHl(Rn) S ”fHLmE;") ll¢

Moreover, for any f € H'(R") there exists glf , hf',’; € L*(R") so that
f=30 el (g, y,). And

n

1|l g gy = inf ZZH(/AHL 2 (&™) H ’AHL (&)  f :Ziﬂz (9], h])

J=1k=1
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Motivations | Extensions and Importance

Reasons to Care about These Results

®» The commutator [b, H] (H Hilbert transform) connects to complex
. The Commutator Theorem is a reformulation of Nehari’s
Theorem and the factorization result is weakening of the strong
factorization of analytic Hardy spaces.
L? = H? ® (H?)* and we have that P is the Cauchy projection
onto H?2.
The Hankel operator with symbol ¢ is the map from H? to (H?)*
and is defined as hy,(f) = (I —P1)(ef) = [@, P4](f).
[b, H] = hy — bz
The Commutator Theorem says things about div-curl lemmas. If
B and E are vector fields in L* with curl B=0and divE =0
then we have that E- B € H'.
B curl-free implies there exists a function ¢ € L?(R™) such that
Bj = Rjp and ”B”LQ(]R" Rn) ||#9||L2(JE;")-

E is divergence-free and so > i1 RiEj(x) = 0;
B Bla) = S0, By(w)By(a) = Sy By(@)Ryp(a) + pla) Ry By (o).
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Motivations | Extensions and Importance

Possible Generalizations

® Change the Target and Domain Spac
Characterize the symbols b so that [b,T] : LP(X, A1) = LI(X, \2).
® Change the Di tial Operator you care about:
. i . . . 1
Can we characterize a BM O space for Riesz transforms VL™ 2
ated to operators L other than the Laplacian?
® Change the geometry of the operator and underlying space:
Can we characterize the commutators when the operators are
invariant under different dilation structur
Can we characterize the commutato
ob

Also interested in combinations of the above questions.
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Motivations | Proof Strategies and Overview

Possible Proof Strategies

®» Proving the Upper bound:
Good A inequalities.
Dyadic Harmonic Analysis Methods (paraproducts, shift operator
Sparse Operators and Domination.
Cauchy Integral Trick.
? Proving the Lower Bound:
Direct ing of the Operator.
Uchiyama’s Algorithm.

For some specific operators we have proofs we can exploit using the
structure of the operator.

B. D. Wick (WUSTL) Commutators and BMO August 11, 2019 7/ 34



Motivations | Proof Strategies and Overview

The Cauchy Integral Trick

Consider the operator: S,(f) = >~ 2 f), where f is a “nice’

function and z is a parameter related to some information about b.
Expand in a power series in z and observe that:

= 16,710,

dz "],

The function z +— S,(f) is holomorphic and so by the Cauchy Integral
Formula we have:

d, .| 4 [ €2T(e %))
E‘Ss(f) /z: ~2

= — dz.
2=0 271 V4

1 TIC) =
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Motivations | Proof Strategies and Overview

The Cauchy Integral Trick

Two important facts are needed to take advantage of this computation:

Lemma

Ifbe BMO, |z| <ex then e*® € Ag with [e*]4, < 1.

2

1
ol saro

Theorem
If T is a Calderon-Zygmund operator and w € Ay then

HT c L (w) — LQ(’LU)H S C(w, T).

B. D. Wick (WUSTL) Commutators and BMO August 11, 2019




Motivations | Proof Strategies and Overview

The Cauchy Integral Trick

From this we have:

116, TV 2

S llgaro 11 L: -

So the commutator [b, T] : L? — L? is bounded and the norm is
controlled by the BM O norm of b.
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Motivations | Proof Strategies and Overview

Dyadic Harmonic Analysis Proof
Useful facts for this proof:
Theorem

If T is a Calderon-Zygmund operator, then T has a decomposition in
terms of Haar shift operators:

T=> S

S)sf - Z Z Z U‘[,J~]\'<f-‘ h.]>h‘f\'~

IeD JeC,(I) KeCs(I)
Theorem

If b€ BMO then the paraproduct 7, : L? — L? with

mp: L? — L? ‘ S bl gaso -
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Motivations | Proof Strategies and Overview

Dyadic Harmonic Analysis Proof

Also important is the following (paraproduct) decomposition:

- - *
bg = mpg + Ty g + myb.
Since can recover any operator 1" by Haar shifts, we can just study
[b, Sy s] and obtain good estimates there. Observe now that for any
operator S that we have by the decomposition:

b.Slf = bSf—S(bf)
mSf+mySf+7msrb— S (myf + my, f + web)
(mpS — Smp) f + (7, S — Smy,) f + (wgp — S7e)b.

The first two terms are easy and give the estimate we want. The

second term is an “error” but is amenable to direct analys

s and
computation since we are working with dyadic operators.
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Motivations | Proof Strategies and Overview

Uchiyama’s Algorithm

Instead of proving [|b]|zp0 S ||[6, 7] : L? — L?|| directly, by duality it
is enough to prove the factorization of H' directly. A function a is an
atom if it is supported in an interval I, [, adz = 0, and [|al|; <

= I
Theorem (Atomic Decomposition)

Any f € H' can be written via an atomic decomposition:

[ =202 agar where ay, are atoms and || f|| g1 ~ inf{>"; |ok|}

Lemma (Splitting Atoms)
Let TI7(g,h) = gTh — hT*g. For any € > 0 and for all atoms a there
ts g,h € L? such that:

H(l‘—HT(g“h)HH] < ¢
lgll 2 Bl < Ce).
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Motivations | Proof Strategies and Overview

Uchiyama’s Algorithm

One then combines the atomic decomposition with slitting atoms to
get the weak factorization.

o= Z”A (1(1)

ZQL (IL — (JA /7A1) —l—Zn;HT gA h(l)
k
= E1+J\[1

We then have that:
(1), (1 1 1)
1Bl = |3} (af) =T (gl hO) | < Cacll flln
Hl

We (an then apply the atomic decomposition to the function
Yok a,\ (a,\ ) _ HT(g,(ﬁl), h}cl))) and have:

FE = Z a,(f)a,,(f).
l\,
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Motivations | Proof Strategies and Overview
Uchiyama’s Algorithm

We can then apply the atomic decomposition to the function
Ei=% a}l})(a;{l) = HT(g;(l,l)q h,}l,‘l))) and have:

Ey = Z (1';:2)c12?‘)
k
2) . (2 . (2) (2 2 2
S ol (@ ~Tr(g? n) + 3 anllz (g 1)
k k

Es + M.

Again we then have:

2), (2 2) 5 (2 : 2
|Bellps = |3 o (@ = Tr(gi”, h2))| < Cae Bl < (Ca0)® 1S 1
k H1

We can the choose that Cye < 1 and iterate to get that E; — 0 and
f = >, M, which is the decomposition we want.
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Changing the Domain and Target Bloom’s Theorem

Commutators Acting Between Weighted Spaces

Definition

Let w be a weight on R"™, i.e. w is an almost everywhere positive,
te] o )
. . q g w (G
locally integrable function. Set w = w(z)dr and (w), = & 2).
) S JQ Q QI
Then we say that w belongs to the Muckenhoupt class of A, weights

for some 1 < p < oo provided that:
w — g 1y rvliq p—1 o0
[w]a, = bgp (w)g <u. >Q < 00,
Theorem (Holmes, Lacey, W., Math. Ann. (2017))

11
For1<p<oo, and A, 2 € Ay, set v = A Ay ". Then there are
constants 0 < ¢ < C' < 00, depending only on n,p, A\1 and Ao, for which

n
bl a0, @ < Y [0 Ri) : L5, (R™) = E, (R < Clbllzaso, @n)-
=1
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Changing the Domain and Target | Bloom’s Theorem

Bloom’s Theorem in Spaces of Homogeneous Type

Let (X, d, 1) be a space of homogeneous type; i.e. d is a quasi
metric and p is a doubling measure.
T is a Calder6on-Zygmund operator on (X, d, ) if T is bounded on
L?(X) and has the associated kernel K (x,y) such that
T(f)(x) = [ K(z,y)f(y)du(y) for any = & supp f, and K(x,y)
satisfies the following estimates: for all z # y,
C

K(x,y)| < ,

|K (z,y)| < Vg
and for d(z,z') < (24¢) td(z,v),
K(z,y) — K(z',y K(y,z)— K(y,z')| < —
|K(z,y) — K(«',y)| + |[K(y, ) — K(y )I_wl,’y)

Here ‘/(LT/a IJ) — II(B(L, d(;l?, y))) and ])y the dOUblillg ST T e
have that V(z,y) =~ V(y, x).
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Changing the Domain and Target | Bloom’s Theorem

Bloom in Spaces of Homogeneous Type

Definition

A function f € Li (X) belongs to BMO,,(X) if

1
16l MO (x) = SUP — = / b(z) — bg| du(z) < oco.
Q ) JQ

w(@) .

Theorem (Duong, Gong, Kuffner, Li, W., 2017)

1 _1
Suppose 1 < p <00, A, 2 € Ap and v = A Xy " and b € BMO, (X).
Then

16, T : L (X) — LA _(X)]I < lIbllsmo, (x)-
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Changing the Domain and Target Bloom’s Theorem

(Partial) Converse to Bloom

Let M be a large positive number. For any fixed ball B(xg,r) centered
at z¢g € X with radius r > 0 there exists a ball B(yo,r) centered at

yo € X with radius r > 0 satisfying d(xo,yo) > Mr, such that T'
satisfies that for every x € B(xzg,r),

| 1#(B(yo, 7))
| (\B(,/(‘ ))( ) V(zo0,%0)

Theorem (Duong, Gong, Kuffner, Li, W., 2017)

Suppose 1 < p < oo, A € A,. Suppose that T' is a Calderén-Zygmund
operator that satisfies the condition above. Also suppose that [b,T) is
bounded from L (X) to LX(X). Then b is in BMO(X), and

16llBMo(x) S NI, T LY (X) — LE(X)]-
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Changing the Differential Operator | The Bessel Operator

The Bessel Operator

Let R, = (0,00) and define the measure dmy := z**dz (A > 0).
This is a space of homogeneous type.

The Bessel operator is defined by

iyl
dx?°

Axf(z) = fx) =

(Note we have absorbed the minus sign into the definition).
One can show that this operator is non-negative and self-adjoint
on L2(Ry;dm,y):

<A)\f7 f>L2(]R{+;d7n)\) 0 vf € LQ(R‘i" dnl’)\)
<A)\f1 g>L3(]R+;dm)\) = <ja A)\g>L2 (Ry;dmy) *
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Changing the Differential Operator | The Bessel Operator

Riesz Transforms associated to the Bessel Operator

Akin to the Euclidean setting we define:
RAxf = ar(A/\)il/?f
One can show that the kernel of this operator is:

2\ [T (x —ycosh)(sinf)?rt
= 5749 z,y Ry
m Jo (2% + y? — 2xycosh) M -
This is a Calderén-Zygmund kernel on the space of homogenous
type:
for every z,y € Ry with = # v,
1 .
m(I(z, |z —y|))’
for every z, zo, y € Ry with |zg — 2| < |zo — y|/2,

|K(y, z0) — K(y, )| + |K(20,y) — K(z,y)|
- |z — ] 1 .
~ Jzo — yl ma(L(wo, |To — yl))
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Changing the Differential Operator | The Bessel Operator

BMO and the Hardy Space associated to the Bessel
Operator

Definition (BMO Associated to the Bessel Operator)
A function f € LL (Ry;dmy) belongs to BMO(R; dm,) if

| 1 e @)
I:gﬁ m ./”'r‘r) fy) — W dmy(y) < oo.

Definition (Hardy Space associated to the Bessel Operator)

H'(Ry;dmy) := {f € L'(Ry;dmy) : Ra, f € LY(Ry;dmy)}

HfHHl(R_HdITL,\) = |’fHL1(H+:('1771A) + HRA,\f||L1(H?;+:dm,\)'
Theorem
The dual of H (R ;dmy) is BMO(Ry;dm,y).
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Changing the Differential Operator | The Bessel Operator
BMO & Commutators

Let [b, Ra,| be the commutator defined by

(b, Ra,)f(x) :=b(x)Ra, f(x) — Ra, (bf)(x).

Theorem (Duong, Li, W., Yang, ITUMJ, (2017))

Let b € Ugs1LL (Ry;dmy) and p € (1,00).

loc

(1) If b € BMO(Ry; dmy), then the commutator [b, Ra,] is bounded on
LP(R4;dmy) with the operator norm

|| [b* RA,\] HL[’(R+;dm,\)%LP(R-o-:d‘m,\\) < CHbHBMO(R%dm,\)’

(2) If [b, Ra,] is bounded on LP(Ry;dmy), then b € BMO(R;dm,))
and

”bHBMO(R_,_;dm)\) < C H [b RAA] HLP(RJr:(l‘r?z,\)—)LP(IEE+;(1777/\) .
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Changing the Differential Operator | The Bessel Operator

Hardy Spaces & Factorizations

Theorem (Duong, Li, W., Yang, ITUMJ (2017))

Let p € (1,00) and p' be the conjugate of p. For any f € H (R, ;dmy),
there exist numbers {a:é‘-'}/,,j. functions { g]’?'}kj C LP(R4;dmy) and
{h{;’} k,; C LP (Ry;dmy) such that

js: 1I(g, h) := gRA, h — hRA, g.
such that

‘!
e
LP(R4;dmy) ) J LP,(IELJr;d‘n'z)\)
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Changing the Geometry | Hilbert Along a Parabola

Hilbert Transform Along a Parabola

The Hilbert transform along ~(t) = (¢,t?) is defined as
. oo dt 9
H,(f)(x) :==p.v. / flz — “,(t))T, x € R°.
J—00 /
Definition

We call Q C R? a parabolic cube if Q = I; x Iy, where I; and I, are

intervals on R and |I2| = |I1|2.

Definition

Suppose b € L}, .(R?). b is in BMO.(R?) if

1 7
16| BMO. (R2) := SUp — / |b(x) — bg|dx < oo,
el g ¢

where the sup is taken over all parabolic cubes and bg = ‘%}' fQ b(y)dy.
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Changing the Geometry | Hilbert Along a Parabola

Hilbert Transform Along a Parabola

Theorem (Bongers, Li, W. (2019))

Suppose 1 < p < co. There exists a positive constant C such that for
b € BMO,(R?), we have

b, )« IP(R?) — LP(R2)] < Culbllao e,

We do not know if the lower bound holds true. We can prove that if
the commutator is bounded, then there is some nece condition the
symbol b must s 7, but it isn’t obvious that this new condition is
the same as being in parabolic BMO.
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Changing the Geometry | Commutators on Stratified Lie Groups

Commutators and Lie Groups

Suppose G is a stratified nilpotent Lie group.
Recall that a connected, simply connected nilpotent Lie group G is said
to be stratified if its left-invariant Lie algebra g (assumed real and of
finite dimension) admits a direct sum decomposition

]\.

g =P Vi where [V1,V;] = Viyq for i <k —1.
=1

Let {X,}1<j<n be a basis for the left-invariant vector fields of degree
oneon G. Let A =370, Xf be the sub-Laplacian on G. Consider the

. . C . : 1
f’h Riesz transform on G which is defined as R; := X;(—A)™ 2.
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Changing the Geometry | Commutators on Stratified Lie Groups

Commutators and Lie Groups

Definition

BMO(G) :={b € L,.(9) : [Ibllzmo(g) < o0},

where

1 n
t -y 1= SUp — t — bgldg.
16l BMO(G) *111?1) B /B |b(g) — bg|dg

and bp 1= |—é| J5 b(g) dg, where B denotes the ball on G defined via a
homogeneous norm p.

Theorem (Duong, Li, and W., J. Math. Pures Appl. (2019))
Suppose that G is a stratified nilpotent Lie group and that 1 < p < oo
and j=1,2,...,n. he commutator of b € BMO(G) and the
Riesz transform R; satisfies

[ B : LP(G) — LP(9)| ~ [|bllBMmo(g)-
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Changing the Geometry | Commutators on Stratified Lie Groups
Commutators and Little BMO

We work in the multiparameter setting R x R where ,
operators that are invariant under dilations in each variable separately.

Definition
A function b € L}, (R?) is in bmo(R x R) if

1 nop
||bemo(F R) = Sup 57 // |b(:’1’1, o) — [)R|d;1‘1(“l.l"2 < 00,
‘ rcrxR |R| JJR

where

1 s
br = @ /R b(x1, x2)dx1dxs

is the mean value of b over the rectangle R.

It is well known that bmo(R x R) coincides with the space of integrable
functions which are uniformly of bounded mean oscillation in each
variable separately.
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Changing the Geometry | Commutators on Stratified Lie Groups

Commutators and Little BMO

We have the following equivalent characterizations for bmo(R x R).
Theorem (Ferguson—Sadosky)

Let b € L}(,C(Rz). The following conditions are equivalent:
b € bmo(R x R);

The commutators [b, Hy] and [b, Ha] are both bounded on L*(R?);
The commutator [b, Hy Hs) is bounded on L?(R?).

The proof of the above theorem is done via complex analysis
techniques.
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Changing the Geometry | Commutators on Stratified Lie Groups

Atoms for Little h'(R x R)

Definition (Ferguson-Sadosky)

An atom on R x R is a function a € L®(R?) supported on a rectangle
R C R x R with ||al]jec < |R|™! and satisfying the cancellation property

/ (21, 22)dx1dxs = 0.
JR2

Let Atom(R x R) denote the collection of all such atoms.

Definition

The atomic Hardy space h!(R x R) is defined as the set of functions of
the form f =3, a;a; with {a;}; C Atom(R x R), {«;}; C C and

> lai| < 0o. Moreover, h'(R x R) is equipped with the norm

| fllntmxr) := inf }°; |oi| where the infimum is taken over all possible
decompositions of f.
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Changing the Geometry | Commutators on Stratified Lie Groups

Commutators and Little BMO

Theorem (Duong, Li, W. and D. Yang, Ann. Inst. Fourier (2018))

For every f € h'(R x R), there exist sequences {a:’;’}j € and
functions gj‘ hé‘f € L*(R?) such that

7= Z Z asé’ II (gé‘ h?)
k=1j=1

in the sense of h'(R x R), where II(f, g) is the bilinear form defined as

II(g,h) := hH1Hsg — gH1 H2h.
Moreover, we have that

11 ey ~ i { 3 32 log | 5]
1

k=1j=
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Conclusion

ITHINE I'DRATHER
ORCANIZE A LARGE
MATHEMATICS CONFERENCES

The daydreams of cat herders

(Modified from the Original Dr. Fun Comic)

Thanks to the Organizers for Arranging the Meeting!
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Conclusion

Thank You!
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