Math 5022 - Complex Analysis 2 Homework 1

- 1. Let U be an open subset of \mathbb{C} . Show that $u(z) := -\log \operatorname{dist}(z, \partial U)$ is subharmonic on U.
- 2. Let u be a subharmonic function on \mathbb{D} such that u < 0. Prove that for each $\xi \in \mathbb{T}$ that:

$$\limsup_{r \to 1-} \frac{u(r\xi)}{1-r} < 0.$$

Hint: Apply the maximum principle to $u(z) + c \log |z|$ on the set $\{1/2 < |z| < 1\}$ for suitable constant c.

3. Let v(z) be a positive subharmonic function on the unit disc and define:

$$m(r) = \frac{1}{2\pi} \int v(re^{i\theta}) d\theta$$

Then m(r) is an increasing convex function of $\log r$. That is, if $\log r = t \log r_1 + (1-t) \log r_2$, 0 < t < 1, then:

$$m(r) \le tm(r_1) + (1-t)m(r_2).$$

4. Define the hyperbolic length of an arc γ in \mathbb{D} to be:

$$\int_{\gamma} \frac{2 \left| dz \right|}{1 - \left| z \right|^2}.$$

Define the Poincaré metric $\psi(z_1, z_2)$ as the influmum of the hyperpolic lengths of arcs joining z_1 to z_2 .

- Show that ψ is confromally invariant.
- Compute the distance between $z_1 = 0$ and $z_2 = r > 0$ explicitly.
- Show that $\psi(z, w) = \log \frac{1 + \rho(z, w)}{1 \rho(z, w)}$ where $\rho(z, w) = \left| \frac{z w}{1 \overline{z} w} \right|$.

5. Let $K(z_0, r)$ denote the non-Euclidean disc

$$K(z_0, r) = \{ z : \rho(z, z_0) < r \}$$

where ρ is the pseudohyperbolic distance. Prove that $K(z_0, r)$ is also a Euclidean disc $D_R(c)$ with $c = c(r, z_0)$ and $R = R(r, z_0)$. Determine explicit formulae for the center c and the radius r.