Math 5022 - Complex Analysis 2
 Homework 4

1. Use Runge's Theorem to prove the following statement: If $\Omega \subset \mathbb{C}$ is an open set and if $f: \Omega \rightarrow \mathbb{C}$ is holomorphic, then there exists a sequence $\left\{r_{j}\right\}$ of rational functions with poles in $\mathbb{C} \cup\{\infty\} \backslash \Omega$ such that $r_{j} \rightarrow f$ normally on Ω.
2. Define $g(z)=\frac{z}{e^{z}-1}$ and write $g(z)=\sum_{k=0}^{\infty} \frac{B_{k}}{k!} z^{k}$. Calculate that
3. $\zeta(1-2 m)=(-1)^{m} \frac{B_{2 m}}{2 m}$;
4. $\zeta(2 m)=\frac{2^{2 m-1} \pi^{2 m} B_{2 m}}{(2 m)!}$
for $m=1,2,3, \ldots$.
5. Let $\left\{a_{n}\right\}$ be a sequence of complex numbers. The function $u(z)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{z}}$ is called a

Dirichlet series. Let σ_{0} be a real number. Prove that if the Dirichlet series converges for some value of z with $\operatorname{Re} z=\sigma_{0}$, then it converges for all z with $\operatorname{Re} z>\sigma_{0}$, uniformly on every compact subset of this region.
4. A sequence of numbers $\left\{a_{n}\right\}$ is strongly multiplicative if $a_{1}=1$ and $a_{m n}=a_{m} a_{n}$ for all m and n. Show that:

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}=\prod_{p \in \mathcal{P}}\left(1-a_{p} p^{-s}\right)^{-1}
$$

provided the infinite series/product converges.
5. Prove the following converse to Runge's Theorem. If K is a compact set whose complement is not connected, then there exists a function f holomorphic in a neighborhood of K which can not be approximated uniformly by a polynomial on K. Hint: Pick z_{0} belonging to a bounded component of K^{c} and let $f(z)=\left(z-z_{0}\right)^{-1}$. Proceed by contradiction to arrive at a polynomial such that $\left|\left(z-z_{0}\right) p(z)-1\right|<1$. Use Maximum Modulus to deduce this holds for all z in the bounded component of containing z_{0}.
6. Define the Riemann surface R of $\log z$ in terms of explicit coordinate patches. Define explicitly the function on R determined by $\log z$. Show that it is a $1-1$ analytic map of R onto the complex plane.
7. Show that the analytic maps from a Riemann surface R to the Riemann sphere $\mathbb{C} \cup\{\infty\}$ are the meromorphic functions on R and the constant function ∞.

