Math 5022 - Complex Analysis 2
 Homework 5

1. Recall that $\tilde{h}(z)=\sup \left\{u(z): \tilde{F}_{h}\right\}$ with \mathcal{F}_{h} is the family of subharmonic functions $u(z)$ on D such that $\limsup _{D \ni z \rightarrow \zeta} u(z) \leq h(\zeta)$, for $\zeta \in D$. Let D be the annulus $\{a<|z|<b\}$. Find $\tilde{h}(z)$ for the function $h(\zeta)=\alpha$ for $|\zeta|=a$ and $h(\zeta)=\beta$ for $|\zeta|=b$.
2. Prove the following Strict Maximum Principle: If u is a subharmonic function on a Riemann surface R, and u attains its maximum at some point of R, then u is constant on R.
3. Let $w=w(z)$ be analytic on a domain D in the complex plane. Show that

$$
\frac{\partial^{2}}{\partial z \partial \bar{z}}=\left|\frac{d w}{d z}\right|^{2} \frac{\partial^{2}}{\partial w \partial \bar{w}} .
$$

Deduce that a smooth function $h(w)$ is harmonic on $w(D)$ if and only if $h(w(z))$ is harmonic on D.
4. Show that if Green's function exists for S, and R is a subsurface of S, then Green's function exists for R, and $g_{R} \leq g_{S}$.
5. Suppose Green's function $g(p, q)$ exists for R. Let $z(p)$ be a coordinate map at q with $z(q)=0$. Show that if $u(p)$ is a subharmonic function on $R \backslash\{q\}$ such that $u(p)=0$ off some compact subset of R, and $u(p)+\log |z(p)|$ is bounded above near q, then $u(p) \leq g(p, q)$.
6. For τ in the upper half plane, denote L_{τ} by the lattice $\mathbb{Z}+\tau \mathbb{Z}$ generated by 1 and τ, and denote the Riemann surface \mathbb{C} / L_{τ} by T_{τ}.
(a) Show that the Riemann surface $T=\mathbb{C} / L$, where L is the lattice generated by two complex numbers ω_{1} and ω_{2} that do not lie on the same line through the origin, is conformally equivalent to the Reimann surface T_{τ} for some τ in the upper half plane. Hint: Take $\tau= \pm \omega_{1} / \omega_{2}$, with the sign chosen so that $\operatorname{Im} \tau>0$.
(b) Show that T_{τ} is conformally equivalent to $T_{\tau^{\prime}}$ if and only if there is a fractional linear transformation of the form $f(z)=\frac{a z+b}{c z+d}$ where $a, b, c, d \in \mathbb{Z}$ satisfy $a d-b c=1$ such that $f(\tau)=\tau^{\prime}$.

