Each problem is worth 10 points.

(1) For the following pairs of integers \(m, n \), find the numbers \(q \) and \(r \) whose existence is asserted in the division algorithm \((n = qm + r) \):

(a) 5, 78; \[78 = 15 \cdot 5 + 3 \] \[q = 15, \ r = 3 \]

(b) 7, -21k + 13, where \(k \) some integer.
\[-21k + 13 = (-3k + 1) \cdot 7 + 6 \] \[q = -3k + 1,\ r = 6 \]

Sketch the graph of the function \(g(x) = -1 + \cos 2x \) by starting with a more basic function and applying one or more geometric transformations (shifts or stretches).
(3) For the set \(\{(a, b) \in \mathbb{Z}^2 \mid b \neq 0\} \) show that the relation \(\sim \) defined by \((a, b) \sim (a', b') \) iff \(ab' - a'b = 0 \) is an equivalence relation. Explain how the set of equivalence classes are in one-to-one correspondence with the set of rational numbers \(\mathbb{Q} \).

OR

For the set \(\mathbb{Z} \) and a fixed positive integer \(m \), show that the relation \(\equiv \) defined by \(k \equiv \ell \) iff \(m \mid k - \ell \) is an equivalence relation. Explain why there are exactly \(m \) equivalence classes.

(4) Write the indicated note as a whole note on the given staff, choosing an appropriate clef.

(a) \(\begin{array}{c} \text{c}_3 \end{array} \)

(b) \(\begin{array}{c} \text{c}_\sharp \end{array} \)

(d) \(\begin{array}{c} \text{b} \# \# \end{array} \)

Identify these keyboard intervals:

(c) \(A_4 \) to \(c_5 \) 3 semitones minor third

(d) \(B_4 \) to \(A_4 \) 6 semitones tritone
(5) For the following modes and tonic notes, indicate the appropriate key signature on the given staff:

(a) Phrygian with tonic B

(b) Locrian with tonic E

(6) Transpose this melodic excerpt, written in C minor, up to F♯ minor. Preserve the scale-tone spelling of each melody note.

(7) Give the duration in beats of:

(a) a half note in $\frac{6}{8}$ time (compound time signature).

(b) a dotted eighth note in $\frac{2}{4}$ time.

(c) an eighth note 5-tuplet in $\frac{4}{4}$ time.

(8) On the line below notate and name the following tuplets:

(a) that which divides the half note into 3 equal notes

(b) that which divides the quarter note into 5 equal notes

(c) that which divides the whole note into 11 equal notes
(9) Complete these measures with a single durational note:

(a) \[\frac{4}{2} \text{ beats} \]

(b) \[\frac{5}{2} \text{ beats} \]

(c) \[\frac{12}{2} \text{ beats} \] (compound)

(10) For the song *Mary Had A Little Lamb*, give the form (e.g., AABC) by dividing it into segments consisting of two bars. Locate and identify a translation other than that which comes from the overall form.

\[\text{Mary had a little lamb, little lamb,} \]
\[\text{little lamb, Mary had a little lamb, his} \]
\[\text{fleece was white as snow} \]

\[\text{A B A C (or A B A C') } \]
3 continued

(a) For \(h \in \mathbb{Z} \) \(m \cdot 0 = k - 1 \cdot 0 \), so \(m \mid (k - k) \). So \(k \equiv k \) (reflexive).

(b) If \(h \equiv k \), then \(m \mid (h - k) \) so \(qm = h - k \) for some \(q \in \mathbb{Z} \).

Multiply by \(-1\) to get \((-q)m = k - l \), showing \(m \mid (l - k) \), hence \(l \equiv k \). (Symmetric)

(c) Assume \(h \equiv l \) and \(l \equiv r \). Then \(m \mid (l - r) \), so there exist \(p, q \in \mathbb{Z} \) with \(pm = h - l \), \(qm = l - r \).

Add to get \(pm + qm = h - l + l - r \), i.e. \((p + q)m = h - r \).

This shows \(m \mid (h - r) \) so \(h \equiv r \) (transitive).

Therefore \(\equiv \) is an equivalence relation.

For any \(u \in \mathbb{Z} \), write \(n = qm + r \) with \(0 \leq r < m \) (Div. Alg.). This shows \(m \mid (n - r) \), so \(n \equiv r \), i.e. \(\Sigma r \) = \(\Sigma r \). Hence \(\Sigma 0 \), \(\Sigma 1 \), \(\Sigma m - 1 \) are all the equivalence classes. Moreover if \(0 \leq r < r' \leq m - 1 \) then \(m \) does not divide \(r' - r \) (\(\Sigma r \) too small) so \(\Sigma r \neq \Sigma r' \). This shows the \(m \) classes \(\Sigma 0 \), \(\Sigma 1 \), \(\Sigma m - 1 \) are distinct.