EXAM I

Math 109 / Music 109A, Fall 2020

Name \qquad Id \qquad

Each problem is worth 10 points.

1. Aural: Circle the triad type.
(a) major
(b) major
minor
2. Sketch the graphs of these functions by starting with a more basic function and applying one or more geometric transformations (shifts or stretches). Use the space on page 4 if you need it.
(a) $f(x)=x^{2}+1$
(b) $g(x)=-1+\sin 3 x$
3. For the following pairs of integers m, n, find the numbers q and r whose existence is asserted in the division algorithm $(n=q m+r)$:
(a) $11,-23$
(b) $3,42 d+5$ (where d is some integer)
4. Write the indicated note as a whole note, choosing and notating an appropriate clef.
(a)

B_{2}
(b) \qquad
G_{5}^{\sharp}
(c)

E_{4}^{b}
5. For the set \mathbb{Z} and a fixed positive integer n, show that the relation \equiv defined by $k \equiv \ell$ if and only if $n \mid(k-\ell)$ is an equivalence relation. Explain why there are exactly n equivalence classes.
6. For the following modes and tonic notes, indicate the appropriate key signature on the given staff, taking note of the clef:
(a) Lydian with tonic D
(c) Phrygian with tonic C^{\sharp}

7. For each of the modes given below, name the chord type of the triad given by scale tones $\hat{2}, \hat{4}$, and $\hat{6}$.
(a) Ionian (major)
(b) Aeolian (minor)
(c) Locrian
8. Extend the following melody with two measures having the same rhythm, employing the following transformations. Do not write in a key change.
(a) diatonic up two scale tones in the second measure
(b) chromatic up a major third (from the original) in the third measure

9. Give the total duration in beats of:
(a) a doubly-dotted quarter note in ${ }_{2}^{2}$ time.
(b) a half note in ${ }_{8}^{9}$ time (compound time signature).
(c) an eighth note quintuplet in ${ }_{4}^{4}$ time.
10. For the song Mary Had A Little Lamb, give the form (e.g., AABC) by dividing it into segments consisting of two bars. Locate and identify a translation other than that which comes from the overall form.

