Homework 4

Math 109 / Music 109A, Fall 2022

Due Monday, October 31.

NOTE: Decimal approximations in this assignment should be rounded off to two digits to the right of the decimal.

1. Suppose a string on a banjo has length 50 cm . Indicate positions of the 12 frets which will allow the string to play one octave of the ascending chromatic scale.
2. A string on a stringed instrument has length 100 cm . Indicate the positions of the single fret which will allow the string to play the note (a) a keyboard major third above the original pitch, and (b) a ratio 5/4 above the original pitch. (Note the closeness of these two positions.)
3. Evaluate without a calculator by writing the argument of \log as a power of the base. Write down each step of the simplification, e.g., $\log _{3} 3 \sqrt{3}=$ $\log _{3} 3^{3 / 2}=\frac{3}{2} \log _{3} 3=\frac{3}{2}$:
(a) $\log _{10}(0.001)$
(b) $\log _{5} 3125$
(c) $\log _{3} \sqrt[10]{81}$
(d) $\log _{c}\left(1 / \sqrt[n]{c^{\ell}}\right)$

Express as a single logarithm without coefficient, i.e., in the form $\log _{b} c$ (do not evaluate with a calculator):
(e) $\log _{4} 10+\log _{4} 21$
(f) $\log _{9} 6-2 \log _{9} 4$
(g) $\log _{2} 13+\log _{4} 21$
(h) $2 \log _{c} x^{2}-\frac{1}{2} \log _{\sqrt{c}} x$
4. Convert to semitones the intervals given by the following ratios: (Round off to 2 digits to the right of the decimal.)
(a) 5
(b) 0.4
(c) $\frac{7}{3}$
(d) $\sqrt[4]{6}$
(e) e

Convert to cents the intervals given by the following ratios, rounding off to the nearest whole cent:
(f) 0.7
(g) 3.1
(h) $\frac{3}{11}$
(i) $\frac{8}{7}$
(j) $\frac{\pi}{2}$
5. Sketch the graphs of:
(a) $f(x)=2^{x}$
(b) $g(x)=\log _{2} x$
(c) $r(x)=5^{x}$
(d) $s(x)=\log _{5} x$

Determine which pairs of these functions are inverse to each other, and which pairs differ by a horizontal or vertical stretch/compression. In the latter case, identify the stretch factor, justifying your answer.
6. Using laws of exponents, prove this property of logarithms:

$$
\log _{b} \frac{x}{y}=\log _{b} x-\log _{b} y
$$

7. Write on the staff the note which best approximates the frequency having the given interval ratio r from the given note:
(a)

(b)

(c)

(d)

8. Express the following interval ratios in terms of n-chromatic units, for the given n. Round off to 2 digits to the right of the decimal.
(a) ratio $\frac{7}{4} ; n=17$
(b) ratio $3 ; n=7$
(c) ratio $0.54 ; n=13$
(d) ratio e; $n=3$ (i.e., major thirds)

9 . For the values $n=11,19,23$, find the n-chromatic scale's best approximation of the interval ratio $3 / 2$, and calculate the error in cents. Which of these values of n gives the best approximation, and is that approximation as good as that of the 12 -chromatic scale?
10. Analyze the basic harmony in the first five measures of Moonlight Sonata. Label the chords with appropriate suffix by root note class (e.g., IIm) and chord type (e.g., G ${ }^{7}$). The music can be downloaded as a pdf file from the website.

