Duality in Finite Element Exterior Calculus

Yakov Berchenko-Kogan

Washington University in St. Louis

November 9–10, 2018
Finite element exterior calculus

Triangulate the domain into simplices. On a simplex T, we have spaces $\mathcal{P}_r\Lambda^k(T)$ and $\mathcal{P}_r^\perp\Lambda^k(T)$ of k-forms on T with polynomial coefficients of degree at most r.

Special cases

► scalar fields
 ► Lagrange
 ► Discontinuous Galerkin

► vector fields
 ► Brezzi–Douglas–Marini elements
 ► Raviart–Thomas elements
 ► Nédélec elements

Example

In three dimensions, $\mathcal{P}_r\Lambda^1(T)$ and $\mathcal{P}_r^\perp\Lambda^1(T)$ are Nédélec $H(\text{curl})$ elements of the 2nd and 1st kinds, respectively.

See (Arnold, Falk, Winther, 2006).
Duality: a motivating example

Let \(\Omega \) be an 3-dimensional domain. Given \(\alpha \in \Lambda^1(\Omega) \) and \(\beta \in \Lambda^2(\Omega) \), we can compute

\[
\int_\Omega \alpha \wedge \beta.
\]

Integration is a perfect pairing \(\Lambda^1(\Omega) \times \Lambda^2(\Omega) \rightarrow \mathbb{R} \).

- For any nonzero \(\alpha \in \Lambda^1(\Omega) \), there exists a \(\beta \in \Lambda^2(\Omega) \) such that \(\int_\Omega \alpha \wedge \beta > 0 \), and vice versa.

In this setting, given \(\alpha \), it is easy to construct such a dual \(\beta \). If \(\alpha = \alpha_x \, dx + \alpha_y \, dy + \alpha_z \, dz \), then we can set

\[
\beta = \alpha_x \, dy \wedge dz + \alpha_y \, dz \wedge dx + \alpha_z \, dx \wedge dy = *\alpha.
\]

- \(\int_\Omega \alpha \wedge \beta = \int_\Omega (\alpha_x^2 + \alpha_y^2 + \alpha_z^2) \, d\text{vol} > 0. \)
- \(\beta \) only depends on \(\alpha \) pointwise.
Duality in finite element exterior calculus

Let T be a simplex. Given $\alpha \in \Lambda^k(T)$ and $\beta \in \Lambda^{n-k}(T)$, we consider the pairing

$$(\alpha, \beta) \mapsto \int_T \alpha \wedge \beta.$$

Arnold, Falk, and Winther show that integration is a perfect pairing in the two settings

$$\mathcal{P}_r^\perp \Lambda^k(T) \times \mathcal{P}_{r+k} \Lambda^{n-k}(T) \rightarrow \mathbb{R},$$

$$\mathcal{P}_r \Lambda^k(T) \times \mathcal{P}_{r+k+1}^\perp \Lambda^{n-k}(T) \rightarrow \mathbb{R}.$$

- \mathcal{P} denotes forms with vanishing tangential trace on ∂T.

Problem

Given $\alpha \in \mathcal{P}_r \Lambda^k(T)$, find a dual $\beta \in \mathcal{P}_{r+k+1}^\perp \Lambda^{n-k}(T)$ such that

- $\int_T \alpha \wedge \beta > 0$, and
- β only depends on α pointwise.
The simplex

To illustrate, focus on dim $T = 2$. The standard simplex T sits inside the first orthant O as those points that satisfy $x + y + z = 1$.

Key ideas

- Identify $\mathcal{P}_r \Lambda^k(T)$ and $\mathcal{P}_r^{-} \Lambda^k(T)$ with spaces $\mathcal{P}_r \Lambda^k(O)$ and $\mathcal{P}_r^{-} \Lambda^k(O)$ of differential forms on O.
- Exploit a natural duality relationship between the \mathcal{P} and \mathcal{P}^- spaces.
Vertical and horizontal antisymmetric tensors

Let E be a vector space, let $H \subset E$ be a hyperplane, and let X be a vector not in the hyperplane. To illustrate, focus on $\text{dim } E = 3$.

\[
\begin{array}{c}
\text{X} \\
\text{H}
\end{array}
\]

- Choose a basis for $E^* = \langle e^1, e^2, e^3 \rangle$ so that $e^3(Y) = 0$ for all $Y \in H$ and $e^1(X) = e^2(X) = 0$.
- This splitting of E^* extends to a splitting of $\Lambda^\bullet E^*$ into vertical and horizontal subspaces $(\Lambda^\bullet E^*)^\perp$ and $(\Lambda^\bullet E^*)^\top$.

<table>
<thead>
<tr>
<th>$\Lambda^k E^*$</th>
<th>vertical</th>
<th>horizontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Lambda^0 E^*$</td>
<td>$\langle 1 \rangle$</td>
<td></td>
</tr>
<tr>
<td>$\Lambda^1 E^*$</td>
<td>$\langle e^3 \rangle$</td>
<td>$\langle e^1, e^2 \rangle$</td>
</tr>
<tr>
<td>$\Lambda^2 E^*$</td>
<td>$\langle e^1 \wedge e^3, e^2 \wedge e^3 \rangle$</td>
<td>$\langle e^1 \wedge e^2 \rangle$</td>
</tr>
<tr>
<td>$\Lambda^3 E^*$</td>
<td>$\langle e^1 \wedge e^2 \wedge e^3 \rangle$</td>
<td></td>
</tr>
</tbody>
</table>

Note that

\[
\Lambda^k H^* \cong (\Lambda^{k+1} E^*)^\perp, \quad \Lambda^k H^* \cong (\Lambda^k E^*)^\top.
\]
Vertical and horizontal differential forms

Let \(x = (x, y, z) \in T \). Apply the above discussion \(E = \mathbb{R}^3 = T_xO \), \(H = T_xT \), \(e^3 = dx + dy + dz \), and \(X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z} \).

Definition

Let \(P_r \Lambda^k(O) \) denote those \((k + 1)\)-forms on \(O \) that

- are \textbf{vertical} at every point \(x \in T \), and
- whose coefficients are homogeneous polynomials of degree \(r \).

Let \(P_r^{-} \Lambda^k(O) \) denote those \(k \)-forms on \(O \) that

- are \textbf{horizontal} at every point \(x \in T \), and
- whose coefficients are homogeneous polynomials of degree \(r \).

Theorem

\[P_r \Lambda^k(T) \cong P_r \Lambda^k(O), \quad P_r^{-} \Lambda^k(T) \cong P_r^{-} \Lambda^k(O) \]
Duality

Problem (reframed)

Given \(\alpha \in P_r \Lambda^k(O) \), find a dual \(\beta \in \hat{P}_{r+k+1} \Lambda^{n-k}(O) \) such that

\[\int_T \alpha \wedge \beta > 0, \text{ and} \]

\(\beta \) only depends on \(\alpha \) pointwise.

Theorem

We explicitly construct such a map \(P_r \Lambda^k(O) \rightarrow \hat{P}_{r+k+1} \Lambda^{n-k}(O) \).

Example

\[\begin{align*}
\quad & \quad \text{Let dim } T = 2, \text{ and let } \alpha \in P_r \Lambda^1(O), \text{ a vertical 2-form on } O. \\
\quad & \quad \text{Write } \alpha = \alpha_x \, dy \wedge dz + \alpha_y \, dz \wedge dx + \alpha_z \, dx \wedge dy. \\
\quad & \quad \text{Set } \beta = \alpha_x yz \, dx + \alpha_y zx \, dy + \alpha_z xy \, dz. \\
\quad & \quad \text{Then } \beta \text{ is horizontal, has vanishing tangential trace on the boundary, and has coefficients of degree } r + 2. \\
\quad & \quad \alpha \wedge \beta = (\alpha_x^2 yz + \alpha_y^2 zx + \alpha_z^2 xy) \, dvol, \text{ a positive multiple of } dvol \text{ on the interior.}
\end{align*} \]
Thank you
Vertical and horizontal antisymmetric tensors

<table>
<thead>
<tr>
<th></th>
<th>$\Lambda^0 E^*$</th>
<th>$\Lambda^1 E^*$</th>
<th>$\Lambda^2 E^*$</th>
<th>$\Lambda^3 E^*$</th>
</tr>
</thead>
<tbody>
<tr>
<td>vertical</td>
<td>$\langle 1 \rangle$</td>
<td>$\langle e^3 \rangle$</td>
<td>$\langle e^1 \wedge e^3, e^2 \wedge e^3 \rangle$</td>
<td>$\langle e^1 \wedge e^2 \wedge e^3 \rangle$</td>
</tr>
<tr>
<td>horizontal</td>
<td>$\langle e^1 \rangle$</td>
<td>$\langle e^1, e^2 \rangle$</td>
<td>$\langle e^1 \wedge e^2 \rangle$</td>
<td></td>
</tr>
</tbody>
</table>

Characterizations of α being vertical.

- $\alpha \wedge e^3 = 0$.
- α is of the form $\gamma \wedge e^3$ for some γ.
- The restriction of α to H is zero.

Characterizations of β being horizontal.

- $i_X \beta = 0$.
- $\beta = i_X \gamma$ for some γ.
- β is orthogonal to all vertical tensors.