Variational Numerical Methods in Geometric PDE

Yakov Berchenko-Kogan

Washington University in St. Louis

March 11, 2019
Preserving conservation laws

- Many physical systems have conserved quantities.
 - energy, angular momentum, electric charge

Figure: Rigid body dynamics (International Space Station)

- There is no guarantee that these conservation laws will continue to hold when we numerically simulate the system.
 - energy gain or loss (numerical dissipation)
- Goal: create numerical methods that preserve conservation laws.
Toy example: the harmonic oscillator

Figure: A simple harmonic oscillator. Video credit: Wikipedia

Equations of Motion

\[\ddot{x} = -x. \]

Conservation of energy

\[\frac{1}{2} (\dot{x}^2 + x^2) \] is conserved.
The harmonic oscillator: numerical conservation

\[\ddot{x} = \dot{y} = -x. \]

The energy \(\frac{1}{2}(x^2 + \dot{x}^2) \) is conserved.

Figure: Phase space diagram for the harmonic oscillator. \(\ddot{x} = \dot{y} = -x \). The energy \(\frac{1}{2}(x^2 + \dot{x}^2) \) is conserved.
The harmonic oscillator: numerical conservation

\[y = \dot{x} \]

Figure: Phase space diagram for the harmonic oscillator. \(\ddot{x} = \dot{y} = -x \).
The energy \(\frac{1}{2}(x^2 + \dot{x}^2) \) is conserved.
The harmonic oscillator: numerical conservation

Figure: Phase space diagram for the harmonic oscillator. $\ddot{x} = \dot{y} = -x$. The energy $\frac{1}{2}(x^2 + \dot{x}^2)$ is conserved.
Figure: Phase space diagram for the harmonic oscillator. \(\ddot{x} = \dot{y} = -x \). The energy \(\frac{1}{2}(x^2 + \dot{x}^2) \) is conserved.
The harmonic oscillator: numerical conservation

Figure: Phase space diagram for the harmonic oscillator. $\ddot{x} = \dot{y} = -x$. The energy $\frac{1}{2}(x^2 + \dot{x}^2)$ is conserved.
The harmonic oscillator: numerical conservation

The energy $\frac{1}{2}(x^2 + \dot{x}^2)$ is conserved.

Figure: Phase space diagram for the harmonic oscillator. $\dot{x} = \dot{y} = -x$. The energy $\frac{1}{2}(x^2 + \dot{x}^2)$ is conserved.
The harmonic oscillator: numerical conservation

![Phase space diagram for the harmonic oscillator. $\ddot{x} = \dot{y} = -x$. The energy $\frac{1}{2}(x^2 + \dot{x}^2)$ is conserved.](image)

Figure: Phase space diagram for the harmonic oscillator. $\ddot{x} = \dot{y} = -x$. The energy $\frac{1}{2}(x^2 + \dot{x}^2)$ is conserved.
The harmonic oscillator: numerical conservation

\[y = \dot{x} \]

Figure: Phase space diagram for the harmonic oscillator. \(\ddot{x} = \dot{y} = -x \).

The energy \(\frac{1}{2}(x^2 + \dot{x}^2) \) is conserved.
The harmonic oscillator: numerical conservation

The energy \(\frac{1}{2}(x^2 + \dot{x}^2) \) is conserved.

Figure: Phase space diagram for the harmonic oscillator. \(\ddot{x} = \dot{y} = -x \).
The harmonic oscillator: numerical conservation

\[y = \dot{x} \]

\[\ddot{x} = \dot{y} = -x. \]

The energy \(\frac{1}{2}(x^2 + \dot{x}^2) \) is conserved.

Figure: Phase space diagram for the harmonic oscillator. \(\ddot{x} = \dot{y} = -x \). The energy \(\frac{1}{2}(x^2 + \dot{x}^2) \) is conserved.
The harmonic oscillator: numerical conservation

\[\ddot{x} = \dot{y} = -x. \]

The energy \[\frac{1}{2}(x^2 + \dot{x}^2) \] is conserved.

Figure: Phase space diagram for the harmonic oscillator. \(\dot{x} = \dot{y} = -x \).
The harmonic oscillator: numerical conservation

\[y = \dot{x} \]

\[\ddot{x} = \dot{y} = -x. \]

The energy \[\frac{1}{2}(x^2 + \dot{x}^2) \] is conserved.

Figure: Phase space diagram for the harmonic oscillator. \(\ddot{x} = \dot{y} = -x \). The energy \(\frac{1}{2}(x^2 + \dot{x}^2) \) is conserved.
The harmonic oscillator: numerical conservation

Figure: Phase space diagram for the harmonic oscillator. $\dot{x} = \dot{y} = -x$. The energy $\frac{1}{2}(x^2 + \dot{x}^2)$ is conserved.
The harmonic oscillator: numerical conservation

Figure: Phase space diagram for the harmonic oscillator. $\ddot{x} = \dot{y} = -x$. The energy $\frac{1}{2}(x^2 + \dot{x}^2)$ is conserved.
The harmonic oscillator: numerical conservation

Figure: Phase space diagram for the harmonic oscillator. $\ddot{x} = \dot{y} = -x$. The energy $\frac{1}{2}(x^2 + \dot{x}^2)$ is conserved.
A variational formulation of a problem is a way of expressing its solutions as the critical points of a functional.

Example
A variational formulation of a problem is a way of expressing its solutions as the critical points of a functional.

Example

- Seek solutions to $\ddot{q} = 0$ among parametrized curves $q: [0, T] \rightarrow \mathbb{R}^3$.
A **variational formulation** of a problem is a way of expressing its solutions as the critical points of a functional.

Example

- Seek solutions to $\ddot{q} = 0$ among parametrized curves $q: [0, T] \rightarrow \mathbb{R}^3$.
- Consider the functional

$$
\mathcal{G}(q) = \int_0^T \frac{1}{2} \| \dot{q} \|^2 \, dt.
$$
A variational formulation of a problem is a way of expressing its solutions as the critical points of a functional.

Example

- Seek solutions to $\ddot{q} = 0$ among parametrized curves $q: [0, T] \to \mathbb{R}^3$.
- Consider the functional
 \[
 \mathcal{G}(q) = \int_0^T \frac{1}{2} \|\dot{q}\|^2 \, dt.
 \]
- Fix endpoints q_0 and q_T.
A variational formulation of a problem is a way of expressing its solutions as the critical points of a functional.

Example

- Seek solutions to $\ddot{q} = 0$ among parametrized curves $q: [0, T] \rightarrow \mathbb{R}^3$.
- Consider the functional
 \[S(q) = \int_0^T \frac{1}{2} \| \dot{q} \|^2 \, dt. \]
- Fix endpoints q_0 and q_T.
- Consider curves $q: [0, T] \rightarrow \mathbb{R}^3$ with $q(0) = q_0$ and $q(T) = q_T$.
A variational formulation of a problem is a way of expressing its solutions as the critical points of a functional.

Example
- Seek solutions to $\ddot{q} = 0$ among parametrized curves $q: [0, T] \rightarrow \mathbb{R}^3$.
- Consider the functional
 \[
 S(q) = \int_0^T \frac{1}{2} \| \dot{q} \|^2 \, dt.
 \]
- Fix endpoints q_0 and q_T.
- Consider curves $q: [0, T] \rightarrow \mathbb{R}^3$ with $q(0) = q_0$ and $q(T) = q_T$.
- The critical point q of S is a solution to $\ddot{q} = 0$.
Example

Geodesics in (M, g) are critical points $q: [0, T] \rightarrow M$ of

$$\mathcal{G}(q) = \int_0^T \frac{1}{2} \| \dot{q} \|^2_g \, dt$$

with fixed endpoints.
Variational formulations

Example

Geodesics in \((M, g)\) are critical points \(q: [0, T] \to M\) of

\[
\mathcal{G}(q) = \int_0^T \frac{1}{2} \|\dot{q}\|^2_g \, dt
\]

with fixed endpoints.

Example

Harmonic oscillator trajectories \(\ddot{x} = -x\) are critical points \(x: [0, T] \to \mathbb{R}\) of

\[
\mathcal{G}(x) = \int_0^T \frac{1}{2} \left(|\dot{x}|^2 - |x|^2 \right) \, dt
\]

with fixed endpoints.
Numerically solving ODEs using a variational formulation

Say we seek curves $q: [0, T] \rightarrow M$ that are critical points of a functional $S(q)$. Consider points q_0, q_1, \ldots, q_N on q. We call such a sequence of points a discrete curve.

Figure: A discrete curve (red) on a continuous curve (blue).

Construct a functional $S_d: \{\text{discrete curves}\} \rightarrow \mathbb{R}$ such that $S_d(q_0, \ldots, q_N) \approx S(q)$.
Say we seek curves \(q : [0, T] \rightarrow M \) that are critical points of a functional \(\mathcal{G}(q) \).
Numerically solving ODEs using a variational formulation

- Say we seek curves $q: [0, T] \rightarrow M$ that are critical points of a functional $\mathcal{G}(q)$.
- Consider points q_0, q_1, \ldots, q_N on q. We call such a sequence of points a discrete curve.

Figure: A discrete curve (red) on a continuous curve (blue).
Variational integrators for ODEs

Numerically solving ODEs using a variational formulation

- Say we seek curves \(q: [0, T] \to M \) that are critical points of a functional \(\mathcal{G}(q) \).
- Consider points \(q_0, q_1, \ldots, q_N \) on \(q \). We call such a sequence of points a **discrete curve**.

![Figure: A discrete curve (red) on a continuous curve (blue).](image)

- Construct a functional \(\mathcal{G}_d: \{ \text{discrete curves} \} \to \mathbb{R} \) such that

\[
\mathcal{G}_d(q_0, \ldots, q_N) \approx \mathcal{G}(q).
\]
Variational integrators for ODEs

Numerically solving ODEs using a variational formulation

Construct a functional $S_d: \{\text{discrete curves} \} \rightarrow \mathbb{R}$ such that $S_d(q_0, \ldots, q_N) \approx S(q)$.

Numerically solve a finite system of equations to find the critical discrete curves for S_d.

The discrete curves that are critical points of S_d are numerical approximations for the continuous curves that are critical points of S.

This numerical method preserves conservation laws.

Variational Numerical Methods in Geometric PDE

Variational integrators for ODEs

<table>
<thead>
<tr>
<th>Numerically solving ODEs using a variational formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construct a functional $\mathcal{S}_d : {\text{discrete curves}} \to \mathbb{R}$ such that</td>
</tr>
<tr>
<td>$\mathcal{S}_d(q_0, \ldots, q_N) \approx \mathcal{S}(q)$.</td>
</tr>
</tbody>
</table>

Construct a functional $S_d : \{\text{discrete curves} \} \rightarrow \mathbb{R}$ such that

$$S_d(q_0, \ldots, q_N) \approx S(q).$$

Numerically solve a finite system of equations to find the critical discrete curves for S_d.

The discrete curves that are critical points of S_d are numerical approximations for the continuous curves that are critical points of S. This numerical method preserves conservation laws.

Construct a functional $\mathcal{S}_d : \{\text{discrete curves}\} \rightarrow \mathbb{R}$ such that

$$\mathcal{S}_d(q_0, \ldots, q_N) \approx \mathcal{S}(q).$$

Numerically solve a finite system of equations to find the critical discrete curves for \mathcal{S}_d.

The discrete curves that are critical points of \mathcal{S}_d are numerical approximations for the continuous curves that are critical points of \mathcal{S}.

This numerical method preserves conservation laws. See Marsden and West, Discrete Mechanics and Variational Integrators, 2001.
Numerically solving ODEs using a variational formulation

- Construct a functional $\mathcal{S}_d : \{\text{discrete curves}\} \rightarrow \mathbb{R}$ such that

 \[\mathcal{S}_d(q_0, \ldots, q_N) \approx \mathcal{S}(q).\]

- Numerically solve a finite system of equations to find the critical discrete curves for \mathcal{S}_d.

- The discrete curves that are critical points of \mathcal{S}_d are numerical approximations for the continuous curves that are critical points of \mathcal{S}.

- This numerical method preserves conservation laws.
Construct a functional $S_d : \{\text{discrete curves}\} \to \mathbb{R}$ such that

$$S_d(q_0, \ldots, q_N) \approx S(q).$$

Numerically solve a finite system of equations to find the critical discrete curves for S_d.

The discrete curves that are critical points of S_d are numerical approximations for the continuous curves that are critical points of S.

This numerical method preserves conservation laws.

- discrete Noether’s theorem
Variational integrators for ODEs

Numerically solving ODEs using a variational formulation

- Construct a functional $\mathcal{S}_d : \{\text{discrete curves}\} \rightarrow \mathbb{R}$ such that
 \[\mathcal{S}_d(q_0, \ldots, q_N) \approx \mathcal{S}(q). \]

- Numerically solve a finite system of equations to find the critical discrete curves for \mathcal{S}_d.

- The discrete curves that are critical points of \mathcal{S}_d are numerical approximations for the continuous curves that are critical points of \mathcal{S}.

- This numerical method preserves conservation laws.
 - discrete Noether’s theorem

Variational formulations for PDEs: Poisson’s equation

Standard PDE formulation

Given $f : \Omega \rightarrow \mathbb{R}$, seek a solution v to

$$\Delta v + f = 0 \text{ on } \Omega, \quad v = 0 \text{ on } \partial \Omega.$$
Standard PDE formulation

Given $f: \Omega \rightarrow \mathbb{R}$, seek a solution v to

$$\Delta v + f = 0 \text{ on } \Omega, \quad v = 0 \text{ on } \partial \Omega.$$

Variational formulation

Seek a critical point v of E.

$$E(v) = \int_{\Omega} \left(\frac{1}{2} \|\nabla v\|^2 - fv \right), \quad v = 0 \text{ on } \partial \Omega.$$
Variational formulations for PDEs: Poisson’s equation

Standard PDE formulation

Given \(f : \Omega \to \mathbb{R} \), seek a solution \(v \) to

\[
\Delta v + f = 0 \text{ on } \Omega, \quad v = 0 \text{ on } \partial \Omega.
\]

Variational formulation

Seek a critical point \(v \) of \(E \).

\[
E(v) = \int_\Omega \left(\frac{1}{2} \| \nabla v \|^2 - fv \right), \quad v = 0 \text{ on } \partial \Omega.
\]

Weak formulation

Seek a \(v \) for which the equation holds for all \(w \).

\[
\int_\Omega \left(\langle \nabla v, \nabla w \rangle - fw \right) = 0, \quad v = w = 0 \text{ on } \partial \Omega.
\]
The Galerkin method

Variational integrator for ODEs

converts an infinite-dimensional variational problem to a finite-dimensional variational problem.

approximates critical curves of $S(q)$ with critical discrete curves of $S_d(q_0, \ldots, q_N)$.

The Galerkin method for PDEs

can be used to convert an infinite-dimensional variational problem to a finite-dimensional variational problem.

approximates critical functions v with critical functions v_h coming from a finite-dimensional space.
The Galerkin method

Variational integrator for ODEs

- converts an infinite-dimensional variational problem to a finite-dimensional variational problem.
The Galerkin method

Variational integrator for ODEs

- converts an infinite-dimensional variational problem to a finite-dimensional variational problem.
- approximates critical curves of $S(q)$ with critical discrete curves of $S_d(q_0, \ldots, q_N)$.

Variational Numerical Methods in Geometric PDE
The Galerkin method

Variational integrator for ODEs
- converts an infinite-dimensional variational problem to a finite-dimensional variational problem.
- approximates critical curves of $S(q)$ with critical discrete curves of $S_d(q_0, \ldots, q_N)$.

The Galerkin method for PDEs
The Galerkin method

Variational integrator for ODEs

- converts an infinite-dimensional variational problem to a finite-dimensional variational problem.
- approximates critical curves of $S(q)$ with critical discrete curves of $S_d(q_0, \ldots, q_N)$.

The Galerkin method for PDEs

- converts an infinite-dimensional variational problem to a finite-dimensional variational problem.
Variational integrator for ODEs
- converts an infinite-dimensional variational problem to a finite-dimensional variational problem.
- approximates critical curves of $S(q)$ with critical discrete curves of $S_d(q_0, \ldots, q_N)$.

The Galerkin method for PDEs
- converts an infinite-dimensional variational problem to a finite-dimensional variational problem.
- approximates critical functions ν with critical functions ν_h coming from a finite-dimensional space.
Let V denote the space of functions $v : \Omega \to \mathbb{R}$.
The Galerkin method for Poisson’s equation

- Let V denote the space of functions $v : \Omega \rightarrow \mathbb{R}$.
- For example, $V = \{v \in L^2(\Omega) \mid \nabla v \in L^2(\Omega), v|_{\partial\Omega} = 0\}$.
The Galerkin method for Poisson’s equation

Variational formulation

Seek a critical point $v \in V$ of E.

$$E(v) = \int_{\Omega} \left(\frac{1}{2} \|\nabla v\|^2 - fv \right).$$

Weak formulation

Seek a $v \in V$ for which the equation holds for all $w \in V$.

$$\int_{\Omega} (\langle \nabla v, \nabla w \rangle - fw) = 0.$$

- Let V denote the space of functions $v : \Omega \to \mathbb{R}$.
- For example, $V = \{ v \in L^2(\Omega) \mid \nabla v \in L^2(\Omega), v|_{\partial\Omega} = 0 \}$.
The Galerkin method for Poisson’s equation

Variational formulation

Seek a critical point \(v \in V \) of \(E \).

\[
E(v) = \int_{\Omega} \left(\frac{1}{2} \| \nabla v \|^2 - fv \right).
\]

Weak formulation

Seek a \(v \in V \) for which the equation holds for all \(w \in V \).

\[
\int_{\Omega} (\langle \nabla v, \nabla w \rangle - fw) = 0.
\]

- Let \(V \) denote the space of functions \(v: \Omega \to \mathbb{R} \).
- For example, \(V = \{ v \in L^2(\Omega) \mid \nabla v \in L^2(\Omega), v|_{\partial \Omega} = 0 \} \).
- Choose a finite-dimensional subspace \(V_h \) of \(V \).
The Galerkin method for Poisson’s equation

Variational formulation
Seek a critical point $v_h \in V_h$ of $E|_{V_h}$.

$$E(v_h) = \int_\Omega \left(\frac{1}{2} ||\nabla v_h||^2 - f v_h \right).$$

Weak formulation
Seek a $v \in V$ for which the equation holds for all $w \in V$.

$$\int_\Omega (\langle \nabla v, \nabla w \rangle - f w) = 0.$$

- Let V denote the space of functions $v : \Omega \to \mathbb{R}$.
 - For example, $V = \{ v \in L^2(\Omega) | \nabla v \in L^2(\Omega), v|_{\partial \Omega} = 0 \}$.
 - Choose a finite-dimensional subspace V_h of V.
The Galerkin method for Poisson’s equation

Variational formulation

Seek a critical point $v_h \in V_h$ of $E|_{V_h}$.

$$E(v_h) = \int_{\Omega} \left(\frac{1}{2} \| \nabla v_h \|^2 - f v_h \right).$$

Weak formulation

Seek a $v_h \in V_h$ for which the equation holds for all $w_h \in V_h$.

$$\int_{\Omega} \left(\langle \nabla v_h, \nabla w_h \rangle - f w_h \right) = 0.$$

- Let V denote the space of functions $v : \Omega \to \mathbb{R}$.
 - For example, $V = \{ v \in L^2(\Omega) \mid \nabla v \in L^2(\Omega), v|_{\partial \Omega} = 0 \}$.
- Choose a finite-dimensional subspace V_h of V.
The Galerkin method for Poisson’s equation

Variational formulation

Seek a critical point $v_h \in V_h$ of $E|_{V_h}$.

$$E(v_h) = \int_\Omega \left(\frac{1}{2} \| \nabla v_h \|^2 - f v_h \right).$$

Weak formulation

Seek a $v_h \in V_h$ for which the equation holds for all $w_h \in V_h$.

$$\int_\Omega (\langle \nabla v_h, \nabla w_h \rangle - f w_h) = 0.$$
Constructing V_h: the finite element method

Figure: A triangulation of a square domain.

Constructing the finite-dimensional subspace $V_h \subset V$
Constructing V_h: the finite element method

Figure: A triangulation of a square domain.

Constructing the finite-dimensional subspace $V_h \subset V$

- Construct a triangulation \mathcal{T}_h of the domain Ω.
Constructing V_h: the finite element method

Constructing the finite-dimensional subspace $V_h \subset V$

- Construct a triangulation \mathcal{T}_h of the domain Ω.
- Let $V_h \subset V$ be the set of continuous functions that are \textit{piecewise linear} with respect to \mathcal{T}_h.

\textbf{Figure:} A triangulation of a square domain.
Constructing V_h: the finite element method

Figure: A triangulation of a square domain.

Constructing the finite-dimensional subspace $V_h \subset V$

- Construct a triangulation \mathcal{T}_h of the domain Ω.
- Let $V_h \subset V$ be the set of continuous functions that are **piecewise linear** with respect to \mathcal{T}_h.
 - More generally, can have piecewise polynomials of degree at most r.
Constructing V_h: the finite element method

Figure: A triangulation of a square domain.

Constructing the finite-dimensional subspace $V_h \subset V$

- Construct a triangulation \mathcal{T}_h of the domain Ω.
- Let $V_h \subset V$ be the set of continuous functions that are piecewise linear with respect to \mathcal{T}_h.
 - More generally, can have piecewise polynomials of degree at most r.
- The Galerkin method gives us the $v_h \in V_h$ that is the “best” approximation of the true solution.
Constructing \(V_h \): the finite element method

Figure: A triangulation of a square domain.

Constructing the finite-dimensional subspace \(V_h \subset V \)

- Construct a triangulation \(\mathcal{T}_h \) of the domain \(\Omega \).
- Let \(V_h \subset V \) be the set of continuous functions that are **piecewise linear** with respect to \(\mathcal{T}_h \).
 - More generally, can have piecewise polynomials of degree at most \(r \).

- The Galerkin method gives us the \(v_h \in V_h \) that is the “best” approximation of the true solution.
 - By refining the triangulation, we get a larger \(V_h \) and a better approximation.
How do we specify a piecewise linear function v_h?
The finite element method: degrees of freedom

How do we specify a piecewise linear function v_h?

Figure: Degrees of freedom (blue) of piecewise linear functions (left) and piecewise quadratic functions (right).

- Specifying a value at each degree of freedom
 - uniquely determines the function on each triangle, and
 - enforces continuity between adjacent triangles.
The finite element method for vector fields

What if we wanted to solve \(\Delta v + f = 0 \) where \(v \) and \(f \) are vector fields (with appropriate boundary conditions)?
The finite element method for vector fields

What if we wanted to solve $\Delta \nu + f = 0$ where ν and f are vector fields (with appropriate boundary conditions)?

Understanding the degrees of freedom of vector fields with tangential continuity
What if we wanted to solve $\Delta v + f = 0$ where v and f are vector fields (with appropriate boundary conditions)?

Understanding the degrees of freedom of vector fields with tangential continuity

- Two dimensions (Raviart, Thomas, 1977; Brezzi, Douglas, Marini, 1985).
- Three dimensions (Nédélec, 1980; Nédélec, 1986).
- Finite element exterior calculus (Arnold, Falk, Winther, 2006).
- Unified perspective on scalar fields and vector fields as differential forms, in any dimension.

Yakov Berchenko-Kogan.

Yakov Berchenko-Kogan.

Variational Numerical Methods in Geometric PDE
What if we wanted to solve $\Delta \nu + f = 0$ where ν and f are vector fields (with appropriate boundary conditions)?

Understanding the degrees of freedom of vector fields with tangential continuity

- Two dimensions (Raviart, Thomas, 1977; Brezzi, Douglas, Marini, 1985).
- Three dimensions (Nédélec, 1980; Nédélec, 1986).
The finite element method for vector fields

What if we wanted to solve $\Delta v + f = 0$ where v and f are vector fields (with appropriate boundary conditions)?

Understanding the degrees of freedom of vector fields with tangential continuity

- Two dimensions (Raviart, Thomas, 1977; Brezzi, Douglas, Marini, 1985).
- Three dimensions (Nédélec, 1980; Nédélec, 1986).
- Finite element exterior calculus (Arnold, Falk, Winther, 2006).
The finite element method for vector fields

What if we wanted to solve $\Delta \mathbf{v} + \mathbf{f} = 0$ where \mathbf{v} and \mathbf{f} are vector fields (with appropriate boundary conditions)?

Understanding the degrees of freedom of vector fields with tangential continuity

- Two dimensions (Raviart, Thomas, 1977; Brezzi, Douglas, Marini, 1985).
- Three dimensions (Nédélec, 1980; Nédélec, 1986).
- Finite element exterior calculus (Arnold, Falk, Winther, 2006).
 - Unified perspective on scalar fields and vector fields as differential forms, in any dimension.
The finite element method for vector fields

What if we wanted to solve $\Delta v + f = 0$ where v and f are vector fields (with appropriate boundary conditions)?

Understanding the degrees of freedom of vector fields with tangential continuity

- Two dimensions (Raviart, Thomas, 1977; Brezzi, Douglas, Marini, 1985).
- Three dimensions (Nédélec, 1980; Nédélec, 1986).
- Finite element exterior calculus (Arnold, Falk, Winther, 2006).
 - Unified perspective on scalar fields and vector fields as differential forms, in any dimension.

Yakov Berchenko-Kogan.
Duality in finite element exterior calculus, 2018.
The finite element method for vector fields

What if we wanted to solve $\Delta v + f = 0$ where v and f are vector fields (with appropriate boundary conditions)?

Understanding the degrees of freedom of vector fields with tangential continuity

- Two dimensions (Raviart, Thomas, 1977; Brezzi, Douglas, Marini, 1985).
- Three dimensions (Nédélec, 1980; Nédélec, 1986).
- Finite element exterior calculus (Arnold, Falk, Winther, 2006).
 - Unified perspective on scalar fields and vector fields as differential forms, in any dimension.

- Yakov Berchenko-Kogan.
 Duality in finite element exterior calculus, 2018.

- Yakov Berchenko-Kogan.
An alternative: hybrid methods

Standard finite element method

Seek a continuous piecewise linear function \(v_h \) that best approximates the true solution.

Hybrid method do not require \(v_h \) to be continuous. Enforce continuity using Lagrange multipliers.

Interpretation of the hybrid method: Each triangle is now an independent system. The Lagrange multipliers describe how adjacent systems interact. For Poisson's equation: heat transfer between adjacent triangles.

See (Brezzi and Fortin, 1991).
An alternative: hybrid methods

Standard finite element method

- Seek a continuous piecewise linear function v_h that best approximates the true solution.
An alternative: hybrid methods

Standard finite element method
- Seek a continuous piecewise linear function v_h that best approximates the true solution.

Hybrid method
- Do not require v_h to be continuous.
- Enforce continuity using Lagrange multipliers.
- Interpretation of the hybrid method: Each triangle is now an independent system. The Lagrange multipliers describe how adjacent systems interact.
- For Poisson's equation: heat transfer between adjacent triangles.

See (Brezzi and Fortin, 1991).
An alternative: hybrid methods

Standard finite element method
- Seek a continuous piecewise linear function v_h that best approximates the true solution.

Hybrid method
- Do not require v_h to be continuous.
An alternative: hybrid methods

Standard finite element method
- Seek a continuous piecewise linear function v_h that best approximates the true solution.

Hybrid method
- Do not require v_h to be continuous.
- Enforce continuity using Lagrange multipliers.

Interpretation of the hybrid method

Each triangle is now an independent system. The Lagrange multipliers describe how adjacent systems interact. For Poisson's equation: heat transfer between adjacent triangles.

See (Brezzi and Fortin, 1991).

Yakov Berchenko-Kogan

Variational Numerical Methods in Geometric PDE
An alternative: hybrid methods

<table>
<thead>
<tr>
<th>Standard finite element method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seek a continuous piecewise linear function v_h that best approximates the true solution.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hybrid method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not require v_h to be continuous.</td>
</tr>
<tr>
<td>Enforce continuity using Lagrange multipliers.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interpretation of the hybrid method</th>
</tr>
</thead>
</table>

See (Brezzi and Fortin, 1991).
An alternative: hybrid methods

Standard finite element method
- Seek a continuous piecewise linear function v_h that best approximates the true solution.

Hybrid method
- Do not require v_h to be continuous.
- Enforce continuity using Lagrange multipliers.

Interpretation of the hybrid method
- Each triangle is now an independent system.
An alternative: hybrid methods

Standard finite element method

- Seek a continuous piecewise linear function v_h that best approximates the true solution.

Hybrid method

- Do not require v_h to be continuous.
- Enforce continuity using Lagrange multipliers.

Interpretation of the hybrid method

- Each triangle is now an independent system.
- The Lagrange multipliers describe how adjacent systems interact.
An alternative: hybrid methods

<table>
<thead>
<tr>
<th>Standard finite element method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seek a continuous piecewise linear function v_h that best approximates the true solution.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hybrid method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not require v_h to be continuous.</td>
</tr>
<tr>
<td>Enforce continuity using Lagrange multipliers.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interpretation of the hybrid method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each triangle is now an independent system.</td>
</tr>
<tr>
<td>The Lagrange multipliers describe how adjacent systems interact.</td>
</tr>
<tr>
<td>For Poisson’s equation: heat transfer between adjacent triangles.</td>
</tr>
</tbody>
</table>
An alternative: hybrid methods

Standard finite element method

- Seek a continuous piecewise linear function v_h that best approximates the true solution.

Hybrid method

- Do not require v_h to be continuous.
- Enforce continuity using Lagrange multipliers.

Interpretation of the hybrid method

- Each triangle is now an independent system.
- The Lagrange multipliers describe how adjacent systems interact.
 - For Poisson’s equation: heat transfer between adjacent triangles.

- See (Brezzi and Fortin, 1991).
Variational formulation

Instead of $E(v_h) = \int_\Omega \left(\frac{1}{2} \| \nabla v_h \|^2 - f v_h \right)$, we have

$$E_h(v_h, \hat{p}_h) = \sum_{K \in T_h} \int_K \left(\frac{1}{2} \| \nabla v_h \|^2 - f v_h \right) - \sum_{K \in T_h} \int_{\partial K} (\hat{p}_h \cdot n) v_h.$$

Weak formulation

- For all $K \in T_h$, $w_h \in V_h$,

$$\int_K \left(\langle \nabla v_h, \nabla w_h \rangle - f w_h \right) - \int_{\partial K} (\hat{p}_h \cdot n) w_h = 0$$

 - Weakly enforces $-\Delta v_h = f$ on K and $\hat{p}_h \cdot n = \nabla v_h \cdot n$ on ∂K.

- For all $\hat{q}_h \in \hat{P}_h$,

$$\sum_{K \in T_h} \int_{\partial K} (\hat{q}_h \cdot n) v_h = 0 \text{ for all } \hat{q}_h \in \hat{P}_h.$$

 - Weakly enforces continuity of v_h.
Conservation of charge in numerical methods for Maxwell’s equations

Maxwell’s equations

\[\mathbf{E} \text{ divergence free} \]
\[\mathbf{B} \text{ evolution equations} \]
\[\dot{\mathbf{E}} = \text{curl} \mathbf{B} \]
\[\dot{\mathbf{B}} = -\text{curl} \mathbf{E} \]

For purposes of exposition, we have set \(\epsilon = \mu = 1 \) and assumed there is no current.

Charge conservation:
\[\text{div} \mathbf{E} \text{ is a conserved quantity.} \]
\[\frac{d}{dt}(\text{div} \mathbf{E}) = \text{div} \dot{\mathbf{E}} = \text{div} \text{curl} \mathbf{B} = 0 \]

\(\text{div} \mathbf{E} \) represents the charge density, denoted \(\rho \), so this conservation law is the conservation of charge.

Yakov Berchenko-Kogan
Variational Numerical Methods in Geometric PDE
Maxwell’s equations

- Electric vector field E.

\[\dot{E} = \text{curl} \, B, \quad \dot{B} = -\text{curl} \, E. \]

For purposes of exposition, we have set $\epsilon = \mu = 1$ and assumed there is no current.

Charge conservation:

$$\text{div} \, E \text{ is a conserved quantity.}$$

$$d\frac{dt}{dt} (\text{div} \, E) = \text{div} \, \dot{E} = \text{div} \, \text{curl} \, B = 0.$$

\(\text{div} \, E\) represents the charge density, denoted \(\rho\), so this conservation law is the conservation of charge.
Maxwell’s equations

- Electric vector field E.
- Divergence free magnetic vector field B.

Evolution equations:

\[
\dot{E} = \text{curl} \, B,
\quad \dot{B} = -\text{curl} \, E.
\]

For purposes of exposition, we have set $\epsilon = \mu = 1$ and assumed there is no current.

Charge conservation

\[
\text{div} \, E \text{ is a conserved quantity.}
\]

\[
d \frac{dt}{dt} \left(\text{div} \, E\right) = \text{div} \, \dot{E} = \text{div} \, \text{curl} \, B = 0.
\]

\[\text{div} \, E\] represents the charge density, denoted ρ, so this conservation law is the conservation of charge.
Maxwell’s equations

- Electric vector field E.
- Divergence free magnetic vector field B.
- Evolution equations

\[
\dot{E} = \text{curl } B, \quad \dot{B} = -\text{curl } E.
\]

For purposes of exposition, we have set $\epsilon = \mu = 1$ and assumed there is no current.

Charge conservation: $\text{div } E$ is a conserved quantity.

\[
d \frac{dt}{dt} \left(\text{div } E \right) = \text{div } \dot{E} = \text{div } \text{curl } B = 0.
\]

$\text{div } E$ represents the charge density, denoted ρ, so this conservation law is the conservation of charge.
Maxwell’s equations

- Electric vector field E.
- Divergence free magnetic vector field B.
- Evolution equations
 \[
 \dot{E} = \text{curl } B, \quad \dot{B} = -\text{curl } E.
 \]
- For purposes of exposition, we have set $\epsilon = \mu = 1$ and assumed there is no current.
Maxwell’s equations

- Electric vector field E.
- Divergence free magnetic vector field B.
- Evolution equations

\[\dot{E} = \text{curl } B, \quad \dot{B} = -\text{curl } E. \]

- For purposes of exposition, we have set $\epsilon = \mu = 1$ and assumed there is no current.

Charge conservation
Maxwell’s equations

- Electric vector field E.
- Divergence free magnetic vector field B.
- Evolution equations

\[
\dot{E} = \text{curl } B, \quad \dot{B} = -\text{curl } E.
\]

- For purposes of exposition, we have set $\epsilon = \mu = 1$ and assumed there is no current.

Charge conservation

- $\text{div } E$ is a conserved quantity.

\[
\frac{d}{dt} (\text{div } E) = \text{div } \dot{E} = \text{div } \text{curl } B = 0.
\]
Maxwell’s equations

- Electric vector field E.
- Divergence free magnetic vector field B.
- Evolution equations

$$\dot{E} = \text{curl } B, \quad \dot{B} = -\text{curl } E.$$

- For purposes of exposition, we have set $\epsilon = \mu = 1$ and assumed there is no current.

Charge conservation

- $\text{div } E$ is a conserved quantity.

$$\frac{d}{dt} (\text{div } E) = \text{div } \dot{E} = \text{div } \text{curl } B = 0.$$

- $\text{div } E$ represents the charge density, denoted ρ, so this conservation law is the conservation of charge.
Maxwell’s equations: examples

Figure: Stationary and dynamic solutions to Maxwell’s equations. Image credit: Wikipedia. Video credit: Electrical Exclusive.
An equivalent formulation of Maxwell’s equations

\[\ddot{\mathbf{A}} = -\text{curl}\ \text{curl}\ \mathbf{A} \]

Equivalence to \(\dot{\mathbf{E}} = \text{curl}\ \mathbf{B} \) and \(\dot{\mathbf{B}} = -\text{curl}\ \mathbf{E} \)

Set \(\mathbf{E} := -\dot{\mathbf{A}} \), \(\mathbf{B} := \text{curl}\ \mathbf{A} \).

The evolution equation \(\dot{\mathbf{B}} = -\text{curl}\ \mathbf{E} \) is automatically satisfied.

\(\ddot{\mathbf{A}} = -\text{curl}\ \text{curl}\ \mathbf{A} \) implies \(\dot{\mathbf{E}} = \text{curl}\ \mathbf{B} \).
An equivalent formulation of Maxwell’s equations

- A vector field A called the vector potential.
Maxwell’s equations: the vector potential

An equivalent formulation of Maxwell’s equations

- A vector field \(A \) called the vector potential.
- Evolution equation

\[
\ddot{A} = -\text{curl}\ \text{curl}\ A.
\]
Maxwell’s equations: the vector potential

An equivalent formulation of Maxwell’s equations

- A vector field A called the vector potential.
- Evolution equation

\[\ddot{A} = - \text{curl} \text{curl} A. \]

Equivalence to $\dot{E} = \text{curl} B$ and $\dot{B} = - \text{curl} E$

Set

\[E := - \dot{A}, \quad B := \text{curl} A. \]
Maxwell’s equations: the vector potential

An equivalent formulation of Maxwell’s equations

- A vector field A called the vector potential.
- Evolution equation

\[\ddot{A} = - \text{curl} \text{ curl } A. \]

Equivalence to $\dot{E} = \text{curl } B$ and $\dot{B} = - \text{curl } E$

Set

\[E := - \dot{A}, \quad B := \text{curl } A. \]

- The evolution equation $\dot{B} = - \text{curl } E$ is automatically satisfied.
Maxwell’s equations: the vector potential

An equivalent formulation of Maxwell’s equations

- A vector field \mathbf{A} called the vector potential.
- Evolution equation

$$\ddot{\mathbf{A}} = - \text{curl} \text{curl} \mathbf{A}.$$

Equivalence to $\dot{\mathbf{E}} = \text{curl} \mathbf{B}$ and $\dot{\mathbf{B}} = - \text{curl} \mathbf{E}$

Set

$$E := - \dot{\mathbf{A}}, \quad B := \text{curl} \mathbf{A}.$$

- The evolution equation $\dot{\mathbf{B}} = - \text{curl} \mathbf{E}$ is automatically satisfied.
- $\dddot{\mathbf{A}} = - \text{curl} \text{curl} \mathbf{A}$ implies $\dot{\mathbf{E}} = \text{curl} \mathbf{B}$.
Maxwell’s equations: numerical charge conservation

- Yee scheme (Yee, 1966).

- Galerkin method (Nédélec, 1980).
 - Allows unstructured meshes.
 - Allows higher-degree piecewise polynomial fields.

- Hybrid method (BK, Stern, 2019).
 - Strong charge conservation.
 - Improved rate of convergence.
Maxwell’s equations: numerical charge conservation

- Yee scheme (Yee, 1966).
 - Requires a structured cubical mesh.
Maxwell’s equations: numerical charge conservation

- Yee scheme (Yee, 1966).
 - Requires a structured cubical mesh.
- Galerkin method (Nédélec, 1980).
Maxwell’s equations: numerical charge conservation

- Yee scheme (Yee, 1966).
 - Requires a structured cubical mesh.
- Galerkin method (Nédélec, 1980).
 - Allows unstructured meshes.
Maxwell’s equations: numerical charge conservation

- **Yee scheme** (Yee, 1966).
 - Requires a structured cubical mesh.

- **Galerkin method** (Nédélec, 1980).
 - Allows unstructured meshes.
 - Allows higher-degree piecewise polynomial fields.

Weak charge conservation.

Hybrid method (BK, Stern, 2019).

Strong charge conservation.

Improved rate of convergence.
Maxwell’s equations: numerical charge conservation

- **Yee scheme** (Yee, 1966).
 - Requires a structured cubical mesh.
- **Galerkin method** (Nédélec, 1980).
 - Allows unstructured meshes.
 - Allows higher-degree piecewise polynomial fields.
 - Weak charge conservation.

Hybrid method (BK, Stern, 2019).
- Strong charge conservation.
- Improved rate of convergence.
Maxwell’s equations: numerical charge conservation

- Yee scheme (Yee, 1966).
 - Requires a structured cubical mesh.
- Galerkin method (Nédélec, 1980).
 - Allows unstructured meshes.
 - Allows higher-degree piecewise polynomial fields.
 - Weak charge conservation.
- Hybrid method (BK, Stern, 2019).
Maxwell’s equations: numerical charge conservation

- **Yee scheme** (Yee, 1966).
 - Requires a structured cubical mesh.
- **Galerkin method** (Nédélec, 1980).
 - Allows unstructured meshes.
 - Allows higher-degree piecewise polynomial fields.
 - Weak charge conservation.
- **Hybrid method** (BK, Stern, 2019).
 - Strong charge conservation.
Maxwell’s equations: numerical charge conservation

- Yee scheme (Yee, 1966).
 - Requires a structured cubical mesh.
- Galerkin method (Nédélec, 1980).
 - Allows unstructured meshes.
 - Allows higher-degree piecewise polynomial fields.
 - Weak charge conservation.
- Hybrid method (BK, Stern, 2019).
 - Strong charge conservation.
 - Improved rate of convergence.
Weak formulation

\[\ddot{A} = - \text{curl} \text{curl} \ A \text{ is equivalent to} \]

\[\int_{\Omega} \langle \ddot{A}, A' \rangle = - \int_{\Omega} \langle \text{curl} \ A, \text{curl} \ A' \rangle \]

for all vector fields \(A' \) whose tangential components vanish on \(\partial \Omega \).
The Galerkin method for Maxwell’s equations (Nédélec)

Weak formulation

\[\ddot{\mathbf{A}} = - \nabla \times \nabla \times \mathbf{A} \] is equivalent to

\[\int_{\Omega} \langle \ddot{\mathbf{A}}, \mathbf{A}' \rangle = - \int_{\Omega} \langle \nabla \times \mathbf{A}, \nabla \times \mathbf{A}' \rangle \]

for all vector fields \(\mathbf{A}' \) whose tangential components vanish on \(\partial \Omega \).

The Galerkin method

Let \(V_h \) be a finite-dimensional subspace of vector fields. Given \(\mathbf{A}_h \in V_h \), solve

\[\int_{\Omega} \langle \ddot{\mathbf{A}}_h, \mathbf{A}'_h \rangle = - \int_{\Omega} \langle \nabla \times \mathbf{A}_h, \nabla \times \mathbf{A}'_h \rangle \]

for all \(\mathbf{A}'_h \in V_h \) for \(\ddot{\mathbf{A}}_h \in V_h \).

We now have finite system of second-order ODEs.
The Galerkin method for Maxwell’s equations (Nédélec)

Weak formulation

\[\ddot{A} = - \text{curl curl } A \] is equivalent to

\[
\int_{\Omega} \langle \ddot{A}, A' \rangle = - \int_{\Omega} \langle \text{curl } A, \text{curl } A' \rangle
\]

for all vector fields \(A') whose tangential components vanish on \(\partial\Omega\).

The Galerkin method

- Let \(V_h\) be a finite-dimensional subspace of vector fields.
The Galerkin method for Maxwell’s equations (Nédélec)

Weak formulation

\[\dddot{A} = - \text{curl curl} \, A \]

is equivalent to

\[\int_{\Omega} \langle \dddot{A}, A' \rangle = - \int_{\Omega} \langle \text{curl} \, A, \text{curl} \, A' \rangle \]

for all vector fields \(A' \) whose tangential components vanish on \(\partial \Omega \).

The Galerkin method

- Let \(V_h \) be a finite-dimensional subspace of vector fields.
- Given \(A_h \in V_h \), solve

\[\int_{\Omega} \langle \dddot{A}_h, A'_h \rangle = - \int_{\Omega} \langle \text{curl} \, A_h, \text{curl} \, A'_h \rangle \]

for all \(A'_h \in V_h \) for \(\dddot{A}_h \in V_h \).
The Galerkin method for Maxwell’s equations (Nédélec)

Weak formulation

\[\ddot{A} = - \text{curl} \text{ curl } A \] is equivalent to

\[\int_{\Omega} \langle \ddot{A}, A' \rangle = - \int_{\Omega} \langle \text{curl } A, \text{curl } A' \rangle \]

for all vector fields \(A' \) whose tangential components vanish on \(\partial \Omega \).

The Galerkin method

- Let \(V_h \) be a finite-dimensional subspace of vector fields.
- Given \(A_h \in V_h \), solve

\[\int_{\Omega} \langle \ddot{A}_h, A'_h \rangle = - \int_{\Omega} \langle \text{curl } A_h, \text{curl } A'_h \rangle \]

for all \(A'_h \in V_h \)

- We now have finite system of second-order ODEs.
The Galerkin method: charge conservation (Nédélec)

Galerkin weak formulation

\[\int_{\Omega} \langle \dddot{A}_h, A'_h \rangle = - \int_{\Omega} \langle \text{curl } A_h, \text{curl } A'_h \rangle \text{ for all } A'_h \in V_h \]
The Galerkin method: charge conservation (Nédélec)

Galerkin weak formulation

\[\int_{\Omega} \langle \ddot{A}_h, A'_h \rangle = - \int_{\Omega} \langle \text{curl } A_h, \text{curl } A'_h \rangle \quad \text{for all } A'_h \in V_h \]

Charge conservation

\[\text{We want conservation of } \rho_h := \text{div } E_h = - \text{div } \dot{A}_h. \]

Let \(\phi'_h \) be a scalar field such that \(\text{grad } \phi'_h \in V_h \). Then

\[\int_{\Omega} \langle \ddot{A}_h, \text{grad } \phi'_h \rangle = - \int_{\Omega} \langle \text{curl } A_h, \text{curl } \text{grad } \phi'_h \rangle = 0. \]

Integrating by parts,

\[0 = - \int_{\Omega} (\text{div } \ddot{A}_h) \phi'_h = \int_{\Omega} \dot{\rho}_h \phi'_h = d\frac{dt}{dt} \int_{\Omega} \rho_h \phi'_h. \]

We only have charge conservation in a weighted average sense.
The Galerkin method: charge conservation (Nédélec)

Galerkin weak formulation

\[
\int_{\Omega} \langle \ddot{A}_h, A'_h \rangle = - \int_{\Omega} \langle \text{curl } A_h, \text{curl } A'_h \rangle \quad \text{for all } A'_h \in V_h
\]

Charge conservation

- We want conservation of \(\rho_h := \text{div } E_h = - \text{div } \dot{A}_h \).
The Galerkin method: charge conservation (Nédélec)

Galerkin weak formulation

\[
\int_{\Omega} \langle \ddot{A}_h, A'_h \rangle = - \int_{\Omega} \langle \text{curl } A_h, \text{curl } A'_h \rangle \text{ for all } A'_h \in V_h
\]

Charge conservation

- We want conservation of \(\rho_h := \text{div } E_h = - \text{div } \dot{A}_h \).
- Let \(\phi'_h \) be a scalar field such that \(\text{grad } \phi'_h \in V_h \). Then

\[
\int_{\Omega} \langle \ddot{A}_h, \text{grad } \phi'_h \rangle = - \int_{\Omega} \langle \text{curl } A_h, \text{curl } \text{grad } \phi'_h \rangle = 0.
\]
The Galerkin method: charge conservation (Nédélec)

Galerkin weak formulation

\[\int_{\Omega} \langle \dddot{A}_h, A'_h \rangle = - \int_{\Omega} \langle \text{curl } A_h, \text{curl } A'_h \rangle \quad \text{for all } A'_h \in V_h \]

Charge conservation

- We want conservation of \(\rho_h := \text{div } E_h = - \text{div } \dot{A}_h \).
- Let \(\phi'_h \) be a scalar field such that \(\text{grad } \phi'_h \in V_h \). Then
 \[\int_{\Omega} \langle \dddot{A}_h, \text{grad } \phi'_h \rangle = - \int_{\Omega} \langle \text{curl } A_h, \text{curl } \text{grad } \phi'_h \rangle = 0. \]
- Integrating by parts,
 \[0 = - \int_{\Omega} (\text{div } \dddot{A}_h) \phi'_h = \int_{\Omega} \dot{\rho}_h \phi'_h = \frac{d}{dt} \int_{\Omega} \rho_h \phi'_h. \]
The Galerkin method: charge conservation (Nédélec)

Galerkin weak formulation

\[\int_{\Omega} \langle \ddot{A}^h, A'_h \rangle = - \int_{\Omega} \langle \text{curl } A^h, \text{curl } A'_h \rangle \quad \text{for all } A'_h \in V_h \]

Charge conservation

- We want conservation of \(\rho^h := \text{div } E^h = - \text{div } \dot{A}^h \).
- Let \(\phi'_h \) be a scalar field such that \(\text{grad } \phi'_h \in V_h \). Then

\[\int_{\Omega} \langle \ddot{A}^h, \text{grad } \phi'_h \rangle = - \int_{\Omega} \langle \text{curl } A^h, \text{curl } \text{grad } \phi'_h \rangle = 0. \]

- Integrating by parts,

\[0 = - \int_{\Omega} (\text{div } \ddot{A}^h) \phi'_h = \int_{\Omega} \dot{\rho}^h \phi'_h = \frac{d}{dt} \int_{\Omega} \rho^h \phi'_h. \]

- We only have charge conservation in a weighted average sense.
Joint work with Ari Stern.

- We construct an appropriate version of hybrid methods for vector equations.

\[\text{Theorem (BK, Stern)} \]

Solutions to our hybrid formulation of Maxwell’s equations satisfy
\[\frac{d}{dt} \text{div} \hat{E}_h = 0. \]

That is, we have a strong charge conservation law for our numerical method.
Joint work with Ari Stern.

- We construct an appropriate version of hybrid methods for vector equations.
 - i.e. we allow A_h to be discontinuous and enforce continuity with Lagrange multipliers.

The physical interpretation of these Lagrange multipliers are the electric and magnetic fields, so we denote them \hat{E}_h and \hat{B}_h.

Theorem (BK, Stern)
Solutions to our hybrid formulation of Maxwell’s equations satisfy
$$\frac{d}{dt} \text{div } \hat{E}_h = 0.$$
That is, we have a strong charge conservation law for our numerical method.
Joint work with Ari Stern.

- We construct an appropriate version of hybrid methods for vector equations.
 - i.e. we allow A_h to be discontinuous and enforce continuity with Lagrange multipliers.

- The physical interpretation of these Lagrange multipliers are the electric and magnetic fields, so we denote them \hat{E}_h and \hat{B}_h.

Theorem (BK, Stern) Solutions to our hybrid formulation of Maxwell’s equations satisfy $d\frac{d}{dt}\text{div} \hat{E}_h = 0$. That is, we have a strong charge conservation law for our numerical method.
Hybrid methods for Maxwell’s equations (BK, Stern)

Joint work with Ari Stern.

- We construct an appropriate version of hybrid methods for vector equations.
 - i.e. we allow A_h to be discontinuous and enforce continuity with Lagrange multipliers.
- The physical interpretation of these Lagrange multipliers are the electric and magnetic fields, so we denote them \hat{E}_h and \hat{B}_h.

Theorem (BK, Stern)

Solutions to our hybrid formulation of Maxwell’s equations satisfy

$$\frac{d}{dt} \text{div } \hat{E}_h = 0.$$

That is, we have a strong charge conservation law for our numerical method.
Hybrid methods for Maxwell’s equations (BK, Stern)

Figure: Total charge using E_h (Nédélec, solid line) vs. \hat{E}_h (our method, dashed line), simulating on a cube domain.
The Yang–Mills equations are a generalization of Maxwell’s equations.
The Yang–Mills equations are a generalization of Maxwell’s equations.
- Nonlinear.
The Yang–Mills equations are a generalization of Maxwell’s equations.
- Nonlinear.
- Used in particle physics.
The Yang–Mills equations

- The Yang–Mills equations are a generalization of Maxwell’s equations.
 - Nonlinear.
 - Used in particle physics.
 - Used by Donaldson to distinguish manifolds that are homeomorphic but not diffeomorphic.
The Yang–Mills equations

- The Yang–Mills equations are a generalization of Maxwell’s equations.
 - Nonlinear.
 - Used in particle physics.
 - Used by Donaldson to distinguish manifolds that are homeomorphic but not diffeomorphic.
- The Yang–Mills equations have a charge conservation law.
The Yang–Mills equations

- The Yang–Mills equations are a generalization of Maxwell’s equations.
 - Nonlinear.
 - Used in particle physics.
 - Used by Donaldson to distinguish manifolds that are homeomorphic but not diffeomorphic.
- The Yang–Mills equations have a charge conservation law.
 - We want numerical methods to conserve charge as well.
Nédélec’s method applied to the Yang–Mills equations

Maxwell’s equations

\[\int_{\Omega} \rho \, h \, \phi^{\prime} \, h \text{ is conserved for any scalar field } \phi^{\prime} \, h \text{ such that } \nabla \phi^{\prime} \, h \in V \, h. \]

Nédélec’s method for the Yang–Mills equations

\[\nabla \phi^{\prime} \, h \text{ is replaced by a nonlinear operator. Consequently, the condition corresponding to } \nabla \phi^{\prime} \, h \in V \, h \text{ is much harder to satisfy. Only works if } \phi^{\prime} \, h \text{ is constant.} \]

Get conservation of \[\int_{\Omega} \rho \, h, \] i.e. global conservation of total charge.

See (Christiansen and Winther, 2006).
Maxwell’s equations

- Nédélec’s method gave us conservation of weighted average charge.

\[\int_{\Omega} \rho_h \phi' h \]

is conserved for any scalar field \(\phi' h \) such that \(\text{grad} \phi' h \in V_h \).

Nédélec’s method for the Yang-Mills equations

\text{grad} is replaced by a nonlinear operator. Consequently, the condition corresponding to \(\text{grad} \phi' h \in V_h \) is much harder to satisfy.

Only works if \(\phi' h \) is constant.

Get conservation of \(\int_{\Omega} \rho_h \), i.e. global conservation of total charge.

See (Christiansen and Winther, 2006).
Nédélec’s method gave us conservation of weighted average charge.

\[\int_{\Omega} \rho_h \phi'_h \text{ is conserved for any scalar field } \phi'_h \text{ such that } \text{grad } \phi'_h \in V_h. \]
Nédélec’s method applied to the Yang–Mills equations

Maxwell’s equations

- Nédélec’s method gave us conservation of weighted average charge.
- \[\int_{\Omega} \rho_h \phi'_h \text{ is conserved for any scalar field } \phi'_h \text{ such that } \text{grad } \phi'_h \in V_h. \]

Nédélec’s method for the Yang-Mills equations

Nédélec’s method for the Yang-Mills equations

See (Christiansen and Winther, 2006).
Nédélec’s method applied to the Yang–Mills equations

Maxwell’s equations

- Nédélec’s method gave us conservation of weighted average charge.
 - $\int_{\Omega} \rho_h \phi'_h$ is conserved for any scalar field ϕ'_h such that $\text{grad} \phi'_h \in V_h$.

Nédélec’s method for the Yang–Mills equations

- grad is replaced by a nonlinear operator.
Nédélec’s method applied to the Yang–Mills equations

Maxwell’s equations

- Nédélec’s method gave us conservation of weighted average charge.
- \(\int_{\Omega} \rho_h \phi'_h \) is conserved for any scalar field \(\phi'_h \) such that \(\text{grad} \phi'_h \in V_h \).

Nédélec’s method for the Yang-Mills equations

- grad is replaced by a nonlinear operator.
- Consequently, the condition corresponding to \(\text{grad} \phi'_h \in V_h \) is much harder to satisfy.
Nédélec’s method applied to the Yang–Mills equations

Maxwell’s equations

- Nédélec’s method gave us conservation of weighted average charge.
 - \(\int_{\Omega} \rho_h \phi'_h \) is conserved for any scalar field \(\phi'_h \) such that \(\text{grad} \phi'_h \in V_h \).

Nédélec’s method for the Yang-Mills equations

- grad is replaced by a nonlinear operator.
- Consequently, the condition corresponding to \(\text{grad} \phi'_h \in V_h \) is much harder to satisfy.
- Only works if \(\phi'_h \) is constant.

See (Christiansen and Winther, 2006).
Nédélec’s method applied to the Yang–Mills equations

Maxwell’s equations

- Nédélec’s method gave us conservation of weighted average charge.
 - \(\int_{\Omega} \rho_h \phi'_h \) is conserved for any scalar field \(\phi'_h \) such that \(\text{grad} \phi'_h \in V_h \).

Nédélec’s method for the Yang-Mills equations

- grad is replaced by a nonlinear operator.
- Consequently, the condition corresponding to \(\text{grad} \phi'_h \in V_h \) is much harder to satisfy.
- Only works if \(\phi'_h \) is constant.
- Get conservation of \(\int_{\Omega} \rho_h \), i.e. global conservation of total charge.
Nédélec’s method applied to the Yang–Mills equations

Maxwell’s equations

- Nédélec’s method gave us conservation of weighted average charge.
 \[\int_{\Omega} \rho_h \phi'_h \] is conserved for any scalar field \(\phi'_h \) such that \(\text{grad} \phi'_h \in V_h \).

Nédélec’s method for the Yang-Mills equations

- \(\text{grad} \) is replaced by a nonlinear operator.
- Consequently, the condition corresponding to \(\text{grad} \phi'_h \in V_h \) is much harder to satisfy.
- Only works if \(\phi'_h \) is constant.
- Get conservation of \(\int_{\Omega} \rho_h \), i.e. global conservation of total charge.
- See (Christiansen and Winther, 2006).
Charge conservation

From before: conservation of
\[
\int_\Omega \rho_h \phi' h
\]
for constant functions \(\phi' h\).

The hybrid method allows discontinuous \(\phi' h\), so we can use \(\phi' h\) that are piecewise constant with respect to a triangulation \(T_h\).

In particular, consider a \(\phi' h\) that is zero outside of a single element \(K \in T_h\).

Theorem (BK, Stern)
For our hybrid formulation of the Yang–Mills equations, the quantity \(\rho_h\) representing the charge is conserved locally:
\[
\int_K \rho_h \text{ is conserved in each element } K \in T_h.
\]
From before: conservation of \(\int_{\Omega} \rho_h \phi'_h \) for constant functions \(\phi'_h \).
Charge conservation

- From before: conservation of \(\int_{\Omega} \rho_h \phi'_h \) for constant functions \(\phi'_h \).
- The hybrid method allows discontinuous \(\phi'_h \), so we can use \(\phi'_h \) that are piecewise constant with respect to a triangulation \(T_h \).
Charge conservation

- From before: conservation of $\int_{\Omega} \rho_h \phi'_h$ for constant functions ϕ'_h.
- The hybrid method allows discontinuous ϕ'_h, so we can use ϕ'_h that are piecewise constant with respect to a triangulation T_h.
- In particular, consider a ϕ'_h that is zero outside of a single element $K \in T_h$.
Charge conservation

- From before: conservation of $\int_{\Omega} \rho_h \phi'_h$ for constant functions ϕ'_h.
- The hybrid method allows discontinuous ϕ'_h, so we can use ϕ'_h that are piecewise constant with respect to a triangulation T_h.
- In particular, consider a ϕ'_h that is zero outside of a single element $K \in T_h$.

Theorem (BK, Stern)

For our hybrid formulation of the Yang–Mills equations, the quantity ρ_h representing the charge is conserved locally:
Charge conservation

- From before: conservation of $\int_{\Omega} \rho_h \phi'_h$ for constant functions ϕ'_h.
- The hybrid method allows discontinuous ϕ'_h, so we can use ϕ'_h that are piecewise constant with respect to a triangulation \mathcal{T}_h.
- In particular, consider a ϕ'_h that is zero outside of a single element $K \in \mathcal{T}_h$.

Theorem (BK, Stern)

For our hybrid formulation of the Yang–Mills equations, the quantity ρ_h representing the charge is conserved locally:

- $\int_K \rho_h$ is conserved in each element $K \in \mathcal{T}_h$.
Yakov Berchenko-Kogan.
The entropy of the Angenent torus is approximately 1.85122.
Journal of Experimental Mathematics, accepted for publication, 2019.
Figure: Curve shortening flow. Image credit: Treibergs. Video credit: Angenent.
Figure: Mean curvature flow. Video credit: Kovács.
Categorize singularities by zooming in at the singular point just before the singular time.
Mean curvature flow singularities

- Categorize singularities by zooming in at the singular point just before the singular time.
 - round sphere

...
Categorize singularities by zooming in at the singular point just before the singular time.

- round sphere
- round cylinder
Mean curvature flow singularities

- Categorize singularities by zooming in at the singular point just before the singular time.
 - round sphere
 - round cylinder
 - others?

Such a limiting surface must be a self-shrinker. A self-shrinker is a surface that evolves under mean curvature flow by dilations. Are there other self-shrinkers? Yes, a torus (Angenent, 1989). Many others (Kapouleas, Kleene, Møller, 2011).
Mean curvature flow singularities

- Categorize singularities by zooming in at the singular point just before the singular time.
 - round sphere
 - round cylinder
 - others?
- Such a limiting surface must be a self-shrinker.
Categorize singularities by zooming in at the singular point just before the singular time.

- round sphere
- round cylinder
- others?

Such a limiting surface must be a self-shrinker.

- A self-shrinker is a surface that evolves under mean curvature flow by dilations.
Mean curvature flow singularities

- Categorize singularities by zooming in at the singular point just before the singular time.
 - round sphere
 - round cylinder
 - others?

- Such a limiting surface must be a self-shrinker.
 - A self-shrinker is a surface that evolves under mean curvature flow by dilations.

- Are there other self-shrinkers?
Categorize singularities by zooming in at the singular point just before the singular time.
- round sphere
- round cylinder
- others?
Such a limiting surface must be a self-shrinker.
- A self-shrinker is a surface that evolves under mean curvature flow by dilations.
Are there other self-shrinkers?
- Yes, a torus (Angenent, 1989).
Mean curvature flow singularities

- Categorize singularities by zooming in at the singular point just before the singular time.
 - round sphere
 - round cylinder
 - others?

- Such a limiting surface must be a self-shrinker.
 - A **self-shrinker** is a surface that evolves under mean curvature flow by dilations.

- Are there other self-shrinkers?
 - Yes, a torus (Angenent, 1989).
 - Many others (Kapouleas, Kleene, Møller, 2011).
Rotationally symmetric self-shrinkers

Figure: Cross-sections of three self-shrinkers: the sphere (green), the cylinder (orange), and the Angenent torus (blue).
A variational formulation for self-shrinkers

Theorem (Huisken, 1990)

A hypersurface \(\Sigma \subset \mathbb{R}^{n+1} \) is a self-shrinker that becomes extinct at the origin after one unit of time if and only if it is a critical point of the weighted area functional called the \(F \)-functional.

\[
F(\Sigma) = (4\pi)^{-n/2} \int_{\Sigma} e^{-|x|^2/4} \, d\text{Area}.
\]
The critical value of the F-functional, called the entropy of the self-shrinker, is helpful in understanding what kinds of singularities can occur.

Figure: Entropies of self-shrinking surfaces

Earlier work (Drugan and Nguyen, 2018): the entropy of the Angenent torus is less than 2.
Entropy of self-shrinkers

The critical value of the F-functional, called the entropy of the self-shrinker, is helpful in understanding what kinds of singularities can occur.

\[
\begin{align*}
2 & \quad \text{two planes} \\
1.85 & \quad \text{Angenent torus (BK)} \\
\sqrt{\frac{2\pi}{e}} & \quad \text{cylinder} \\
\frac{4}{e} & \quad \text{sphere} \\
1 & \quad \text{plane}
\end{align*}
\]

Figure: Entropies of self-shrinking surfaces

Earlier work (Drugan and Nguyen, 2018): the entropy of the Angenent torus is less than 2.
Variational formulations for rotationally-symmetric self-shrinkers

A rotationally symmetric surface \(\Sigma \subset \mathbb{R}^3 \) with cross-sectional curve \(q \) is a self-shrinker if:

- \(\Sigma \) is a critical point of

\[
F(\Sigma) = \frac{1}{4\pi} \int_{\Sigma} e^{-|x|^2/4} \, d\text{Area}.
\]
Variational formulations for rotationally-symmetric self-shrinkers

A rotationally symmetric surface $\Sigma \subset \mathbb{R}^3$ with cross-sectional curve q is a self-shrinker if:

- Σ is a critical point of
 \[F(\Sigma) = \frac{1}{4\pi} \int_{\Sigma} e^{-|x|^2/4} \, d\text{Area}. \]

- q is a critical point of
 \[\frac{1}{2} \int_q e^{-(r^2+z^2)/4} \, d\text{Arclength}. \]
A rotationally symmetric surface $\Sigma \subset \mathbb{R}^3$ with cross-sectional curve q is a self-shrinker if:

- Σ is a critical point of

$$F(\Sigma) = \frac{1}{4\pi} \int_{\Sigma} e^{-|x|^2/4} \, d\text{Area}.$$

- q is a critical point of

$$\frac{1}{2} \int_{q} r e^{-(r^2+z^2)/4} \, d\text{Arclength}.$$

- q is a geodesic in the (r,z)-plane with Riemannian metric

$$g = \frac{1}{4} r^2 e^{-(r^2+z^2)/4} (dr^2 + dz^2).$$
A rotationally symmetric surface $\Sigma \subset \mathbb{R}^3$ with cross-sectional curve q is a self-shrinker if:

- Σ is a critical point of
 \[F(\Sigma) = \frac{1}{4\pi} \int_{\Sigma} e^{-|x|^2/4} \, d\text{Area}. \]

- q is a critical point of
 \[\frac{1}{2} \int_q re^{-(r^2+z^2)/4} \, d\text{Arclength}. \]

- q is a geodesic in the (r, z)-plane with Riemannian metric
 \[g = \frac{1}{4} r^2 e^{-(r^2+z^2)/4} (dr^2 + dz^2). \]

- q is a critical point of
 \[\mathcal{G}(q) = \int \frac{1}{4} r^2 e^{-(r^2+z^2)/2} \|\dot{q}\|^2 \, dt. \]
Computing the Angenent torus numerically

The cross-section of the Angenent torus is a closed curve q in the (r,z)-plane that is a critical point of

$$\mathcal{S}(q) = \int 1/4 r^2 e^{-(r^2+z^2)/2} \| \dot{q} \|^2 \, dt.$$

- Approximate q with a discrete curve $q_0, q_1, \ldots, q_N = q_0$
Computing the Angenent torus numerically

The cross-section of the Angenent torus is a closed curve q in the (r, z)-plane that is a critical point of

$$\mathcal{S}(q) = \int \frac{1}{4} r^2 e^{-(r^2 + z^2)/2} \| \dot{q} \|^2 \, dt.$$

- Approximate q with a discrete curve $q_0, q_1, \ldots, q_N = q_0$
- Approximate \mathcal{S} with a functional \mathcal{S}_d on discrete curves.

$$\mathcal{S}(q) \approx \mathcal{S}_d(q_1, \ldots, q_N).$$
Computing the Angenent torus numerically

The cross-section of the Angenent torus is a closed curve \(q \) in the \((r, z)\)-plane that is a critical point of

\[
\mathcal{S}(q) = \int 4 r^2 e^{-\left(r^2+z^2\right)/2} \| \dot{q} \|^2 \, dt.
\]

- Approximate \(q \) with a discrete curve \(q_0, q_1, \ldots, q_N = q_0 \)
- Approximate \(\mathcal{S} \) with a functional \(\mathcal{S}_d \) on discrete curves.

\[
\mathcal{S}(q) \approx \mathcal{S}_d(q_1, \ldots, q_N).
\]

- Compute a critical point of the finite-dimensional functional \(\mathcal{S}_d \).
Computing the Angenent torus numerically

The cross-section of the Angenent torus is a closed curve q in the (r, z)-plane that is a critical point of

$$\mathcal{S}(q) = \int \frac{1}{4} r^2 e^{-\left(\frac{r^2 + z^2}{2}\right)} \|\dot{q}\|^2 \, dt.$$

- Approximate q with a discrete curve $q_0, q_1, \ldots, q_N = q_0$.
- Approximate \mathcal{S} with a functional \mathcal{S}_d on discrete curves.

$$\mathcal{S}(q) \approx \mathcal{S}_d(q_1, \ldots, q_N).$$

- Compute a critical point of the finite-dimensional functional \mathcal{S}_d.
 - This discrete curve approximates the cross-section of the Angenent torus.
Figure: The entropy of the Angenent torus as computed using 128, 256, 512, 1024, and 2048 points. The values (orange) appear to lie on an exponential curve (blue) converging to 1.8512167 (green).

The convergence rate suggests that the computed value is within 2×10^{-6} of the true value.
Future directions

The index of the Angenent torus

- Critical points of a functional have an index.
 - How many independent perturbations decrease the value of the functional?
 - The number of negative eigenvalues of the Hessian.
- The index of the Angenent torus is at least 3 (Liu, 2016) but is otherwise unknown even conjecturally.
 - Computing the index of the Angenent torus would give insight into how “generic” Angenent torus singularities are.
- We can easily compute the Hessian of S_d.

Higher dimensions

- Angenent described a self-shrinking doughnut $S^1 \times S^{n-1}$ in any dimension.
- My code can compute its entropy.
- What is the limiting behavior as n becomes large?
Thank you